Estimation of Strong Ground Motions in Southwest Western Australia with a Combined Green's Function and Stochastic Approach

2008 ◽  
Vol 12 (3) ◽  
pp. 382-405 ◽  
Author(s):  
Jonathan Z. Liang ◽  
Hong Hao ◽  
Brian A. Gaull ◽  
Cvetan Sinadinovski
2021 ◽  
Vol 11 (15) ◽  
pp. 7041
Author(s):  
Baoyintu Baoyintu ◽  
Naren Mandula ◽  
Hiroshi Kawase

We used the Green’s function summation method together with the randomly perturbed asperity sources to sum up broadband statistical Green’s functions of a moderate-size source and predict strong ground motions due to the expected M8.1 to 8.7 Nankai-Trough earthquakes along the southern coast of western Japan. We successfully simulated seismic intensity distributions similar to the past earthquakes and strong ground motions similar to the empirical attenuation relations of peak ground acceleration and velocity. Using these results, we predicted building damage by non-linear response analyses and find that at the regions close to the source, as well as regions with relatively thick, soft sediments such as the shoreline and alluvium valleys along the rivers, there is a possibility of severe damage regardless of the types of buildings. Moreover, the predicted damage ratios for buildings built before 1981 are much higher than those built after because of the significant code modifications in 1981. We also find that the damage ratio is highest for steel buildings, followed by wooden houses, and then reinforced concrete buildings.


1998 ◽  
Vol 88 (2) ◽  
pp. 357-367 ◽  
Author(s):  
Katsuhiro Kamae ◽  
Kojiro Irikura ◽  
Arben Pitarka

Abstract A method for simulating strong ground motion for a large earthquake based on synthetic Green's function is presented. We use the synthetic motions of a small event as Green's functions instead of observed records of small events. Ground motions from small events are calculated using a hybrid scheme combining deterministic and stochastic approaches. The long-period motions from the small events are deterministically calculated using the 3D finite-difference method, whereas the high-frequency motions from them are stochastically simulated using Boore's method. The small-event motions are synthesized summing the long-period and short-period motions after passing them through a pair of matched filters to follow the omega-squared source model. We call the resultant time series “hybrid Green's functions” (HGF). Ground motions from a large earthquake are simulated by following the empirical Green's function (EGF) method. We demonstrate the effectiveness of the method at simulating ground motion from the 1995 Hyogo-ken Nanbu earthquake (Mw 6.9).


Sign in / Sign up

Export Citation Format

Share Document