Rigorous quantum electrodynamics treatment of electron correlations in high-Z ions: Beyond the Breit and effective-potential approximations

2001 ◽  
Vol 81 (10) ◽  
pp. 1547-1555 ◽  
Author(s):  
V. A. Yerokhin ◽  
A. N. Artemyev ◽  
V. M. Shabaev ◽  
M. M. Sysak ◽  
O. M. Zherebtsov ◽  
...  
Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 86
Author(s):  
Anand Bhatia ◽  
Richard Drachman

Polarizabilities and hyperpolarizabilities, α1, β1, γ1, α2, β2, γ2, α3, β3, γ3, δ and ε of hydrogenic systems have been calculated in the presence of a Debye–Huckel potential, using pseudostates for the S, P, D and F states. All of these converge very quickly as the number of terms in the pseudostates is increased and are essentially independent of the nonlinear parameters. All the results are in good agreement with the results obtained for hydrogenic systems obtained by Drachman. The effective potential seen by the outer electron is −α1/x4 + (6β1 − α2)/x6 + higher-order terms, where x is the distance from the outer electron to the nucleus. The exchange and electron–electron correlations are unimportant because the outer electron is far away from the nucleus. This implies that the conventional variational calculations are not necessary. The results agree well with the results of Drachman for the screening parameter equal to zero in the Debye–Huckel potential. We can calculate the energies of Rydberg states by using the polarizabilities and hyperpolarizabilities in the presence of Debye potential seen by the outer electron when the atoms are embedded in a plasma. Most calculations are carried out in the absence of the Debye–Huckel potential. However, it is not possible to carry out experiments when there is a complete absence of plasma at a particular electron temperature and density. The present calculations of polarizabilities and hyperpolarizabilities will provide accurate results for Rydberg states when the measurements for such states are carried out.


1979 ◽  
Vol 19 (10) ◽  
pp. 2929-2934 ◽  
Author(s):  
Walter Dittrich ◽  
Wu-yang Tsai ◽  
Karl-Heinz Zimmermann

2007 ◽  
Vol 22 (01) ◽  
pp. 1-9 ◽  
Author(s):  
F. BRANDT ◽  
F. CHISHTIE ◽  
D. G. C. MCKEON

By applying the renormalization group equation, it has been shown that the effective potential V in the massless [Formula: see text] model and in massless scalar quantum electrodynamics is independent of the scalar field. This analysis is extended here to the massive [Formula: see text] model, showing that the effective potential is independent of ϕ here as well.


Computation ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 30 ◽  
Author(s):  
Viraht Sahni ◽  
Xiao-Yin Pan ◽  
Tao Yang

1982 ◽  
Vol 25 (10) ◽  
pp. 2729-2735 ◽  
Author(s):  
Sree Ram Valluri ◽  
Darrell Lamm ◽  
Wieslaw J. Mielniczuk

Sign in / Sign up

Export Citation Format

Share Document