curved spacetime
Recently Published Documents


TOTAL DOCUMENTS

560
(FIVE YEARS 102)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Riccardo Capovilla ◽  
Giovany Cruz ◽  
Edgar Yair López

Author(s):  
Qasem Exirifard ◽  
Ebrahim Karimi

In this paper, we consider relativistic quantum field theory in the presence of an external electric potential in a general curved spacetime geometry. We utilize Fermi coordinates adapted to the time-like geodesic to describe the low-energy physics in the laboratory and calculate the leading correction due to the curvature of the spacetime geometry to the Schrödinger equation. We then compute the nonvanishing probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzschild black hole. The photon emitted from the excited state by spontaneous emission extracts energy from the black hole, increases the decay rate of the black hole and adds to the information paradox.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Shu-Min Wu ◽  
Hao-Sheng Zeng

AbstractWe study the genuine tripartite nonlocality (GTN) and the genuine tripartite entanglement (GTE) of Dirac fields in the background of a Schwarzschild black hole. We find that the Hawking radiation degrades both the physically accessible GTN and the physically accessible GTE. The former suffers from “sudden death” at some critical Hawking temperature, and the latter approaches to the nonzero asymptotic value in the limit of infinite Hawking temperature. We also find that the Hawking effect cannot generate the physically inaccessible GTN, but can generate the physically inaccessible GTE for fermion fields in curved spacetime. These results show that on the one hand the GTN cannot pass through the event horizon of black hole, but the GTE do can, and on the other hand the surviving physically accessible GTE and the generated physically inaccessible GTE for fermions in curved spacetime are all not nonlocal. Some monogamy relations between the physically accessible GTE and the physically inaccessible GTE are found.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Daniel J Burger ◽  
William T. Emond ◽  
Nathan Moynihan

Abstract We examine the double copy structure of anyons in gauge theory and gravity. Using on-shell amplitude techniques, we construct little group covariant spinor-helicity variables describing massive particles with spin, which together with locality and unitarity enables us to derive the long-range tree-level scattering amplitudes involving anyons. We discover that classical gauge theory anyon solutions double copy to their gravitational counterparts in a non-trivial manner. Interestingly, we show that the massless double copy captures the topological structure of curved spacetime in three dimensions by introducing a non-trivial mixing of the topological graviton and the dilaton. Finally, we show that the celebrated Aharonov-Bohm phase can be derived directly from the constructed on-shell amplitude, and that it too enjoys a simple double copy to its gravitational counterpart.


2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Enrico Cannizzaro ◽  
Andrea Caputo ◽  
Laura Sberna ◽  
Paolo Pani

2021 ◽  
pp. 178-188
Author(s):  
Andrew M. Steane

Electromagnetic field theory, and the physics of continuous media (fluids, solids) in curved spacetime are discussed. Generalized Maxwell’s equations are written down and their justifaction is briefly presented. Then we turn to thermodynamics and continuous media. The concept of energy and momentum conservation is carefully expounded, and then the equations for fluid flow (continuity equation and Euler equation) are developed from the divergence of the energy tensor. The Bernoulli equation and the equation for hydrostatic equilibrium are obtained. The chapter then goes on to a general discussion of how general relativity operates and how gravitational phenomena are calculated and observed. The relation between gravity and other aspects of physics such as particle physics is discussed, along with the notion of general covariance.


Sign in / Sign up

Export Citation Format

Share Document