Exergy analysis and thermodynamic optimisation of a steam power plant-based Rankine cycle system using intelligent optimisation algorithms

Author(s):  
Samad Elahifar ◽  
Ehsanolah Assareh ◽  
Rahim Moltames
Author(s):  
Ken Van Treuren ◽  
Nicole DeJong

Power generation is increasingly important in the turbine industry. Students need exposure to the complexities of such systems as found in this design project. This project is part of the second of a two-course thermodynamic sequence designed to provide a foundation in thermodynamics and expose the students to various power generation cycles. One way to teach students the Rankine Cycle is to involve them in the various aspects of the cycle through a design project. Students, in teams of four or five, are given the task of designing a 250 MW steam power plant based on the Rankine Cycle. Calculations are made using the software of choice, usually Engineering Equation Solver (EES). Students are required to make an oral and written presentation. In addition to the presentation of calculations and graphs, an emphasis is placed on describing the general considerations of the design problem and the presentation of the unique advantages of the design. Students gain valuable experience in system optimization and better learn to justify their design decisions. Based on student evaluations the project was well received and increased student interest in the field of power generation. However, there is a need to include an economic component to the problem, and more time must be spent in class discussing typical component operating parameters.


2019 ◽  
Vol 125 ◽  
pp. 13003
Author(s):  
MSK. Tony Suryo U ◽  
Eflita Yohana ◽  
Syarif Dwi Priyanto ◽  
Ignatius Apryando M. ◽  
Tauviqirrahman

Steam power plant Generation of Tanjung Jati B 3rd unit has a capacity of 660 MW. The power plant operational in 2011, because of the long operation process, there will be a decrease in performance. The plant needs to be researched to analyze the performance and losses that occurs in the power plant. Because this also affects the environment if the efficiency of the power plant is high, it can reduce the use of coal. Because coal becomes air pollution and environmental pollution, which can cause acid rain, water pollution, and global warming. This research is used to analyze energy and exergy on the components of a steam power plant. From the results of this research, the largest of destruction exergy boiler is 881.08 MW and the exergetic efficiency is 48.66%. While the rate of the smallest destruction exergy in LPH 3 is 0.6 MW and the exergetic efficiency is 94.45%. The contribution of the largest Losses energy in the boiler is 231 MW and energetic efficiency is 87.05%. While the contribution of the smallest energy Losses in HPH 6 is 0.74 MW and energetic efficiency is 99.23%.


Sign in / Sign up

Export Citation Format

Share Document