Exergy Analysis of a Steam Power Plant with Direct Air-Cooling System in China

Author(s):  
Hongbin Zhao ◽  
Yuman Chai
Author(s):  
A. Al Bassam ◽  
Y. M. Al Said

This paper summarizes the experiences with the first gas turbine inlet air cooling project in Saudi Arabia. It will cover the feasibility study, cooling system options, overview, system equipment description, process flow diagram, construction, commissioning, start-up and performance of the project which is currently under commissioning and initial start up at Qassim Central Power Plant (QCPP) owned by Saudi Electric Company (S.E.C.) Central Region Branch.


2019 ◽  
Vol 125 ◽  
pp. 13003
Author(s):  
MSK. Tony Suryo U ◽  
Eflita Yohana ◽  
Syarif Dwi Priyanto ◽  
Ignatius Apryando M. ◽  
Tauviqirrahman

Steam power plant Generation of Tanjung Jati B 3rd unit has a capacity of 660 MW. The power plant operational in 2011, because of the long operation process, there will be a decrease in performance. The plant needs to be researched to analyze the performance and losses that occurs in the power plant. Because this also affects the environment if the efficiency of the power plant is high, it can reduce the use of coal. Because coal becomes air pollution and environmental pollution, which can cause acid rain, water pollution, and global warming. This research is used to analyze energy and exergy on the components of a steam power plant. From the results of this research, the largest of destruction exergy boiler is 881.08 MW and the exergetic efficiency is 48.66%. While the rate of the smallest destruction exergy in LPH 3 is 0.6 MW and the exergetic efficiency is 94.45%. The contribution of the largest Losses energy in the boiler is 231 MW and energetic efficiency is 87.05%. While the contribution of the smallest energy Losses in HPH 6 is 0.74 MW and energetic efficiency is 99.23%.


Author(s):  
Hiroyuki Yamazaki ◽  
Yoshiaki Nishimura ◽  
Masahiro Abe ◽  
Kazumasa Takata ◽  
Satoshi Hada ◽  
...  

Tohoku Electric Power Company, Inc. (Tohoku-EPCO) has been adopting cutting-edge gas turbines for gas turbine combined cycle (GTCC) power plants to contribute for reduction of energy consumption, and making a continuous effort to study the next generation gas turbines to further improve GTCC power plants efficiency and flexibility. Tohoku-EPCO and Mitsubishi Hitachi Power Systems, Ltd (MHPS) developed “forced air cooling system” as a brand-new combustor cooling system for the next generation GTCC system in a collaborative project. The forced air cooling system can be applied to gas turbines with a turbine inlet temperature (TIT) of 1600deg.C or more by controlling the cooling air temperature and the amount of cooling air. Recently, the forced air cooling system verification test has been completed successfully at a demonstration power plant located within MHPS Takasago Works (T-point). Since the forced air cooling system has been verified, the 1650deg.C class next generation GTCC power plant with the forced air cooling system is now being developed. Final confirmation test of 1650deg.C class next generation GTCC system will be carried out in 2020.


Sign in / Sign up

Export Citation Format

Share Document