Improving steam power plant efficiency through exergy analysis: effects of altering excess combustion air and stack-gas temperature

2008 ◽  
Vol 5 (1) ◽  
pp. 31 ◽  
Author(s):  
Marc A. Rosen ◽  
Raymond Tang
2019 ◽  
Vol 125 ◽  
pp. 13003
Author(s):  
MSK. Tony Suryo U ◽  
Eflita Yohana ◽  
Syarif Dwi Priyanto ◽  
Ignatius Apryando M. ◽  
Tauviqirrahman

Steam power plant Generation of Tanjung Jati B 3rd unit has a capacity of 660 MW. The power plant operational in 2011, because of the long operation process, there will be a decrease in performance. The plant needs to be researched to analyze the performance and losses that occurs in the power plant. Because this also affects the environment if the efficiency of the power plant is high, it can reduce the use of coal. Because coal becomes air pollution and environmental pollution, which can cause acid rain, water pollution, and global warming. This research is used to analyze energy and exergy on the components of a steam power plant. From the results of this research, the largest of destruction exergy boiler is 881.08 MW and the exergetic efficiency is 48.66%. While the rate of the smallest destruction exergy in LPH 3 is 0.6 MW and the exergetic efficiency is 94.45%. The contribution of the largest Losses energy in the boiler is 231 MW and energetic efficiency is 87.05%. While the contribution of the smallest energy Losses in HPH 6 is 0.74 MW and energetic efficiency is 99.23%.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Osman Shamet ◽  
Rana Ahmed ◽  
Kamal Nasreldin Abdalla

In this study, the energy and exergy analysis of Garri 4 power plant in Sudan is presented. The primary objective of this paper is to identify the major source of irreversibilities in the cycle. The equipment of the power plant has been analyzed individually. Values regarding heat loss and exergy destruction have been presented for each equipment. The results confirmed that the condenser was the main source for energy loss (about 67%), while ex­ergy analysis revealed that the boiler contributed to the largest percentage of exergy destruction (about 84.36%) which can be reduced by preheating the inlet water to a sufficient temperature and controlling air to fuel ratio.


Sign in / Sign up

Export Citation Format

Share Document