Quasi-radial wall jets as a new concept in boundary layer flow control

2017 ◽  
Vol 19 (1) ◽  
pp. 25-48
Author(s):  
Khodayar Javadi ◽  
Majid Hajipour
Author(s):  
Valentin Bettrich ◽  
Martin Bitter ◽  
Reinhard Niehuis

The use of fluidic oscillators for active flow control applications is a proven and efficient concept. For the well-known highly loaded LP turbine profile T161, the total pressure losses could already reduced by 40% at low Reynolds numbers, were usually flow separation occurs. For further improvements of the active flow control concept, it is essential to understand the driving flow phenomena responsible for the loss reduction mechanism, which are discussed in this paper. The results presented are based on experimental investigations on a flat plate with pressure gradient, imposed with an aerodynamically highly loaded low pressure turbine suction side flow and equipped with active flow control. The analogy to the suction side of the T161 is shown and validated against former cascade measurements. Based on the T161 equivalent operating point of Re = 70,000 and a theoretical out flow Mach number of Ma2,th = 0.6, the focus is set on the interaction of the boundary layer flow with high frequency actuation. The chosen actuator, a high frequency coupled fluidic oscillator, is designed to independently adjust mass flow and frequency. The flat plate is equipped with an array of high frequency actuators to control the flow separation. For this study one oscillator operating point at 6.7kHz is presented and the influence on transition and loss reduction compared to the non-actuated case is discussed. This oscillator operating point was found to be most efficient and the steady and unsteady mixing behavior of the high frequency actuator impact and the low pressure turbine like suction side boundary layer flow is investigated in much detail. Depending on the measurement technique, the isentropic Mach number distribution, frequency spectra, standard deviation, skewness and kurtosis are evaluated. The most important results are on the one hand, that the chosen concept is more efficient compared to former studies in means of mass flow investment, which is mainly based on the chosen oscillator outlet position and frequency. On the other hand, in a transonic flow the mixing and interaction of the high frequency pulses and the boundary layer flow require about 10% of the surface length to even establish and about to 30% to be completed. These results of the mixing behavior between actuator and boundary layer for compressible flow conditions help to attain a fundamental understanding for future designs of active flow control concepts.


2018 ◽  
Vol 124 (2) ◽  
pp. 533-551 ◽  
Author(s):  
K. Aswathy Nair ◽  
A. Sameen ◽  
S. Anil Lal

2009 ◽  
Vol 74 ◽  
pp. 157-160
Author(s):  
Jing Chuen Lin ◽  
An Shik Yang ◽  
Li Yu Tseng

The main purpose of active flow control research is to develop a cost-effective technology that has the potential for inventive advances in aerodynamic performance and maneuvering compared to conventional approaches. It can be essential to thoroughly understand the flow characteristics of the formation and interaction of a synthetic jet with external crossflow before formulating a practicable active flow control strategy. In this study, the theoretical model used the transient three-dimensional conservation equations of mass and momentum for compressible, isothermal, turbulent flows. The motion of a movable membrane plate was also treated as the moving boundary by prescribing the displacement on the plate surface. The predictions by the computational fluid dynamics (CFD) code ACE+® were compared with measured transient phase-averaged velocities of Rumsey et al. for software validation. The CFD software ACE+® was utilized for numerical calculations to probe the time evolution of the development process of the synthetic jet and its interaction within a turbulent boundary layer flow for a complete actuation cycle.


Sign in / Sign up

Export Citation Format

Share Document