Use of Micro Synthetic Jet Actuators for Boundary Layer Flow Control

2009 ◽  
Vol 74 ◽  
pp. 157-160
Author(s):  
Jing Chuen Lin ◽  
An Shik Yang ◽  
Li Yu Tseng

The main purpose of active flow control research is to develop a cost-effective technology that has the potential for inventive advances in aerodynamic performance and maneuvering compared to conventional approaches. It can be essential to thoroughly understand the flow characteristics of the formation and interaction of a synthetic jet with external crossflow before formulating a practicable active flow control strategy. In this study, the theoretical model used the transient three-dimensional conservation equations of mass and momentum for compressible, isothermal, turbulent flows. The motion of a movable membrane plate was also treated as the moving boundary by prescribing the displacement on the plate surface. The predictions by the computational fluid dynamics (CFD) code ACE+® were compared with measured transient phase-averaged velocities of Rumsey et al. for software validation. The CFD software ACE+® was utilized for numerical calculations to probe the time evolution of the development process of the synthetic jet and its interaction within a turbulent boundary layer flow for a complete actuation cycle.

2011 ◽  
Vol 27 (4) ◽  
pp. 503-509 ◽  
Author(s):  
L.-Y. Tseng ◽  
A.-S. Yang ◽  
J.-C. Lin

ABSTRACTMiniature synthetic jet actuators are low operating power, zero-net-mass-flux and very compact devices which have demonstrated their capability in modifying the subsonic flow characteristics for boundary layer flow control. In order to improve the design active flow control systems, the present study aims to examine the formation and interaction of unsteady flowfield of a synthetic jet with external crossflow. In view of a single synthetic jet emitting into a turbulent boundary layer crossflow via a circular orifice, the theoretical model utilized the transient three-dimensional conservation equations of mass and momentum for compressible, turbulent flows with a negligible temperature variation over the computational domain. The motion of a movable membrane plate was also treated as the moving boundary by prescribing the displacement on the plate surface. The predictions by the computational fluid dynamics (CFD) software ACE+®were compared with the measured transient phase-averaged velocities in literature for code validation. The predictions showed the time evolution of the large vortical structure originating from the jet orifice and its successive interaction with the crossflow to change the flow structure inside the boundary layer.


Author(s):  
Valentin Bettrich ◽  
Martin Bitter ◽  
Reinhard Niehuis

The use of fluidic oscillators for active flow control applications is a proven and efficient concept. For the well-known highly loaded LP turbine profile T161, the total pressure losses could already reduced by 40% at low Reynolds numbers, were usually flow separation occurs. For further improvements of the active flow control concept, it is essential to understand the driving flow phenomena responsible for the loss reduction mechanism, which are discussed in this paper. The results presented are based on experimental investigations on a flat plate with pressure gradient, imposed with an aerodynamically highly loaded low pressure turbine suction side flow and equipped with active flow control. The analogy to the suction side of the T161 is shown and validated against former cascade measurements. Based on the T161 equivalent operating point of Re = 70,000 and a theoretical out flow Mach number of Ma2,th = 0.6, the focus is set on the interaction of the boundary layer flow with high frequency actuation. The chosen actuator, a high frequency coupled fluidic oscillator, is designed to independently adjust mass flow and frequency. The flat plate is equipped with an array of high frequency actuators to control the flow separation. For this study one oscillator operating point at 6.7kHz is presented and the influence on transition and loss reduction compared to the non-actuated case is discussed. This oscillator operating point was found to be most efficient and the steady and unsteady mixing behavior of the high frequency actuator impact and the low pressure turbine like suction side boundary layer flow is investigated in much detail. Depending on the measurement technique, the isentropic Mach number distribution, frequency spectra, standard deviation, skewness and kurtosis are evaluated. The most important results are on the one hand, that the chosen concept is more efficient compared to former studies in means of mass flow investment, which is mainly based on the chosen oscillator outlet position and frequency. On the other hand, in a transonic flow the mixing and interaction of the high frequency pulses and the boundary layer flow require about 10% of the surface length to even establish and about to 30% to be completed. These results of the mixing behavior between actuator and boundary layer for compressible flow conditions help to attain a fundamental understanding for future designs of active flow control concepts.


2014 ◽  
Vol 598 ◽  
pp. 562-567
Author(s):  
Xiao Ping Xu ◽  
Zhou Zhou ◽  
Rui Wang

The aerodynamic performance of TAU0015 airfoil was investigated with synthetic jet control method. The simplified mathematical model of the active flow control was established with unsteady velocity boundary condition at the specific location of airfoil surface. The aerodynamic performance was simulated with synthetic jet and the efficiency of jet momentum coefficient was conducted. The result shows that the flow control model could perform the minor jet flow characteristics and higher jet momentum coefficient result better control efficiency.


Author(s):  
Maria Grazia De Giorgi ◽  
Stefania Traficante ◽  
Carla De Luca ◽  
Daniela Bello ◽  
Antonio Ficarella

In this work a CFD analysis is applied to study the suppression of the boundary layer separation into a highly-loaded subsonic compressor stator cascade, by different active flow control techniques. Active flow control techniques have the potential to delay separation and to increase the pressure ratio. In particular three different techniques have been applied: the actuation by steady jet, by zero net mass flux Synthetic Jet (SJA) and by plasma actuator. Several works have investigated the use of synthetic jet and plasma actuators on the airfoil, but only few studies have compared the effect of these devices. Concerning the synthetic jet actuator, a suction/blowing type boundary condition is used, imposing a prescribed sinusoidal velocity depending on velocity amplitude, jet frequency and jet angle of ejection with respect to the wall. Concerning the plasma actuation, the effect is modeled into numerical flow solvers by adding the paraelectric force that represents the plasma force into the momentum equation. The plasma, generated by Dielectric Barrier Discharge, acts as a momentum source to the boundary layer allowing it to remain attached throughout a larger portion of the airfoil. The time-averaged body force component, acting on the fluid, depends on the frequency and on the applied voltage, the charge density, the electrical field and the dimensional properties of the actuator, like width of the electrodes and gap between the electrodes. Using this numerical model, the effect of plasma actuators to suppress the flow separation over the blade has been investigated, increasing the turbo-machinery performance too. Finally, the comparison between the different actuation devices shows that, reducing the secondary flow structures, each actuation technique beneficially affects the performance of the stator compressor cascade, even if in the steady jet the costs are relevant.


2021 ◽  
Vol 125 (1287) ◽  
pp. 830-846
Author(s):  
W. Zhang ◽  
X.T. Nie ◽  
X.Y. Gao ◽  
W.H. Chen

ABSTRACTActive flow control for aerofoils has been proven to be an effective way to improve the aerodynamic performance of aircraft. A conceptual hybrid design with surfaces embedded with Shape-Memory Alloy (SMA) and trailing Macro Fibre Composites (MFC) is proposed to implement active flow control for aerofoils. A Computational Fluid Dynamics (CFD) model has been built to explore the feasibility and potential performance of the proposed conceptual hybrid design. Accordingly, numerical analysis is carried out to investigate the unsteady flow characteristics by dynamic morphing rather than using classical static simulations and complicated coupling. The results show that camber growth by SMA action could cause an evident rise of Cl and Cd in the take-off/landing phases when the Angle-of-Attack (AoA) is less than 10°. The transient tail vibration behaviour in the cruise period when using MFC actuators is studied over wide ranges of frequency, AoA and vibration amplitude. The buffet frequency is locked in by the vibration frequency, and a decrease of 1.66–2.32% in Cd can be achieved by using a proper vibration frequency and amplitude.


2017 ◽  
Vol 19 (1) ◽  
pp. 25-48
Author(s):  
Khodayar Javadi ◽  
Majid Hajipour

2018 ◽  
Vol 124 (2) ◽  
pp. 533-551 ◽  
Author(s):  
K. Aswathy Nair ◽  
A. Sameen ◽  
S. Anil Lal

Sign in / Sign up

Export Citation Format

Share Document