lamellar bodies
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 18)

H-INDEX

45
(FIVE YEARS 1)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Takahiro Suezawa ◽  
Shuhei Kanagaki ◽  
Yohei Korogi ◽  
Kazuhisa Nakao ◽  
Toyohiro Hirai ◽  
...  

Abstract Background Somatic cells differentiated from patient-specific human induced pluripotent stem cells (iPSCs) could be a useful tool in human cell-based disease research. Hermansky–Pudlak syndrome (HPS) is an autosomal recessive genetic disorder characterized by oculocutaneous albinism and a platelet dysfunction. HPS patients often suffer from lethal HPS associated interstitial pneumonia (HPSIP). Lung transplantation has been the only treatment for HPSIP. Lysosome-related organelles are impaired in HPS, thereby disrupting alveolar type 2 (AT2) cells with lamellar bodies. HPSIP lungs are characterized by enlarged lamellar bodies. Despite species differences between human and mouse in HPSIP, most studies have been conducted in mice since culturing human AT2 cells is difficult. Methods We generated patient-specific iPSCs from patient-derived fibroblasts with the most common bi-allelic variant, c.1472_1487dup16, in HPS1 for modeling severe phenotypes of HPSIP. We then corrected the variant of patient-specific iPSCs using CRISPR-based microhomology-mediated end joining to obtain isogenic controls. The iPSCs were then differentiated into lung epithelial cells using two different lung organoid models, lung bud organoids (LBOs) and alveolar organoids (AOs), and explored the phenotypes contributing to the pathogenesis of HPSIP using transcriptomic and proteomic analyses. Results The LBOs derived from patient-specific iPSCs successfully recapitulated the abnormalities in morphology and size. Proteomic analysis of AOs involving iPSC-derived AT2 cells and primary lung fibroblasts revealed mitochondrial dysfunction in HPS1 patient-specific alveolar epithelial cells. Further, giant lamellar bodies were recapitulated in patient-specific AT2 cells. Conclusions The HPS1 patient-specific iPSCs and their gene-corrected counterparts generated in this study could be a new research tool for understanding the pathogenesis of HPSIP caused by HPS1 deficiency in humans.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Myeon-Sik Yang ◽  
Byung Kwan Oh ◽  
Daram Yang ◽  
Eun Young Oh ◽  
Yeonhwa Kim ◽  
...  

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic is causing a global crisis. It is still unresolved. Although many therapies and vaccines are being studied, they are still in their infancy. As this pandemic continues, rapid and accurate research for the development of therapies and vaccines is needed. Therefore, it is necessary to understand characteristics of diseases caused by SARS-CoV-2 through animal models. Syrian hamsters are known to be susceptible to SARS-CoV-2. They were intranasally inoculated with SARS-CoV-2. At 2, 4, 8, 12, and 16 days post-infection (dpi), these hamsters were euthanized, and tissues were collected for ultrastructural and microstructural examinations. Microscopic lesions were prominent in the upper and lower respiratory tracts from 2 and 4 dpi groups, respectively. The respiratory epithelium in the trachea, bronchiole, and alveolar showed pathological changes. Inflammatory cells including neutrophils, lymphocytes, macrophages, and eosinophils were infiltrated in/around tracheal lamina propria, pulmonary vessels, alveoli, and bronchiole. In pulmonary lesions, alveolar wall was thickened with infiltrated inflammatory cells, mainly neutrophils and macrophages. In the trachea, epithelial damages started from 2 dpi and recovered from 8 dpi, consistent with microscopic results, High levels of SARS-CoV-2 nucleoprotein were detected at 2 dpi and 4 dpi. In the lung, lesions were most severe at 8 dpi. Meanwhile, high levels of SARS-CoV-2 were detected at 4 dpi. Electron microscopic examinations revealed cellular changes in the trachea epithelium and alveolar epithelium such as vacuolation, sparse micro-organelle, and poor cellular margin. In the trachea epithelium, the number of cytoplasmic organelles was diminished, and small vesicles were prominent from 2 dpi. Some of these electron-lucent vesicles were filled with virion particles. From 8 dpi, the trachea epithelium started to recover. Because of shrunken nucleus and swollen cytoplasm, the N/C ratio of type 2 pneumocyte decreased at 8 and 12 dpi. From 8 dpi, lamellar bodies on type 2 pneumocyte cytoplasm were increasingly observed. Their number then decreased from 16 dpi. However, there was no significant change in type 1 pneumocyte. Viral vesicles were only observed in the cytoplasm of type 2 pneumocyte. In conclusion, ultra- and micro-structural changes presented in this study may provide useful information for SARS-CoV-2 studies in various fields.


2021 ◽  
Vol 43 (1) ◽  
pp. 389-404
Author(s):  
Hiroki Maruyama ◽  
Atsumi Taguchi ◽  
Mariko Mikame ◽  
Atsushi Izawa ◽  
Naoki Morito ◽  
...  

Fabry disease is an X-linked disorder of α-galactosidase A (GLA) deficiency. Our previous interim analysis (1 July 2014 to 31 December 2015) revealed plasma globotriaosylsphingosine as a promising primary screening biomarker for Fabry disease probands. Herein, we report the final results, including patients enrolled from 1 January to 31 December 2016 for evaluating the potential of plasma globotriaosylsphingosine and GLA activity as a combined screening marker. We screened 5691 patients (3439 males) referred from 237 Japanese specialty clinics based on clinical findings suggestive of Fabry disease using plasma globotriaosylsphingosine and GLA activity as primary screening markers, and GLA variant status as a secondary screening marker. Of the 14 males who tested positive in the globotriaosylsphingosine screen (≥2.0 ng/mL), 11 with low GLA activity (<4.0 nmol/h/mL) displayed GLA variants (four classic, seven late-onset) and one with normal GLA activity and no pathogenic variant displayed lamellar bodies in affected organs, indicating late-onset biopsy-proven Fabry disease. Of the 19 females who tested positive in the globotriaosylsphingosine screen, eight with low GLA activity displayed GLA variants (six classic, two late-onset) and five with normal GLA activity displayed a GLA variant (one classic) and no pathogenic variant (four late-onset biopsy-proven). The combination of plasma globotriaosylsphingosine and GLA activity can be a primary screening biomarker for classic, late-onset, and late-onset biopsy-proven Fabry disease probands.


2021 ◽  
Vol 118 (20) ◽  
pp. e2025208118
Author(s):  
Seunghyi Kook ◽  
Ping Wang ◽  
Shufang Meng ◽  
Christopher S. Jetter ◽  
Jennifer M. S. Sucre ◽  
...  

Lamellar bodies (LBs) are lysosome-related organelles (LROs) of surfactant-producing alveolar type 2 (AT2) cells of the distal lung epithelium. Trafficking pathways to LBs have been understudied but are likely critical to AT2 cell homeostasis given associations between genetic defects of endosome to LRO trafficking and pulmonary fibrosis in Hermansky Pudlak syndrome (HPS). Our prior studies uncovered a role for AP-3, defective in HPS type 2, in trafficking Peroxiredoxin-6 to LBs. We now show that the P4-type ATPase ATP8A1 is sorted by AP-3 from early endosomes to LBs through recognition of a C-terminal dileucine-based signal. Disruption of the AP-3/ATP8A1 interaction causes ATP8A1 accumulation in early sorting and/or recycling endosomes, enhancing phosphatidylserine exposure on the cytosolic leaflet. This in turn promotes activation of Yes-activating protein, a transcriptional coactivator, augmenting cell migration and AT2 cell numbers. Together, these studies illuminate a mechanism whereby loss of AP-3–mediated trafficking contributes to a toxic gain-of-function that results in enhanced and sustained activation of a repair pathway associated with pulmonary fibrosis.


2021 ◽  
Author(s):  
Miho Araki ◽  
Genta Ito ◽  
Sho Takatori ◽  
Taisuke Tomita

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson disease. It has been shown that Lrrk2 knockout (KO) rodents have enlarged lamellar bodies (LBs) in their alveolar epithelial type II cells, although the underlying mechanisms remain unclear. Here we performed proteomic analyses on LBs isolated from Lrrk2 KO mice and found that the LB proteome is substantially different in Lrrk2 KO mice compared with wild-type mice. In Lrrk2 KO LBs, several Rab proteins were increased, and subunit proteins of BLOC-1-related complex (BORC) were decreased. The amount of surfactant protein C was significantly decreased in the bronchoalveolar lavage fluid obtained from Lrrk2 KO mice, suggesting that LB exocytosis is impaired in Lrrk2 KO mice. We also found that the enlargement of LBs is recapitulated in A549 cells upon KO of LRRK2 or by treating cells with LRRK2 inhibitors. Using this model, we show that KO of BORCS6, a BORC subunit gene, but not other BORC genes, causes LB enlargement. Our findings implicate the LRRK2-BORCS6 pathway in the maintenance of LB morphology.


Author(s):  
Eun-Jung Park ◽  
Min-Sung Kang ◽  
Hyun-Ji Lim ◽  
Tae Kyu Kang ◽  
Seung-Woo Jin ◽  
...  

Author(s):  
I. S. Sobolevskaya ◽  
O. D. Myadelets ◽  
O. B. Ostrovskaya

The aim of this study is to study the effect of dark deprivation on the ultrastructure of epidermal keratinocytes. Electron microscopic evaluation of the status of keratinocytes of the epidermis of the skin of white outbred rats with dark deprivation. For morphometric evaluation of the production capacity of counting the number of granules per 100 μm2. Using the application program ImageScopeM determines the average and equivalent indicators of lamellar bodies (μm), as well as their perimeter (μm); the average area of one section of the lalellar body (μm2); roundness coefficient and average relative electronic number of lamellar bodies.Electron microscopic analysis of keratinocytes revealed significant changes in their ultrastructure, which are due to the influence of desynchronosis. Maximum transformations were observed in Odland granules (lamellar bodies). Thus, the morphometric assessment revealed changes in the number (increase), their size (decrease), as well as in the distribution of lamellar plaques in them.With desynchronosis, significant changes in the ultrastructure of keratinocytes are observed. This indicates significant systemic disorders of the epidermis as a whole. In this transformation, there are cells of a special prickly and granular layer, in particular, lamellar bodies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Steffen Klein ◽  
Benedikt H. Wimmer ◽  
Sophie L. Winter ◽  
Androniki Kolovou ◽  
Vibor Laketa ◽  
...  

AbstractLamellar bodies (LBs) are surfactant-rich organelles in alveolar cells. LBs disassemble into a lipid-protein network that reduces surface tension and facilitates gas exchange in the alveolar cavity. Current knowledge of LB architecture is predominantly based on electron microscopy studies using disruptive sample preparation methods. We established and validated a post-correlation on-lamella cryo-correlative light and electron microscopy approach for cryo-FIB milled cells to structurally characterize and validate the identity of LBs in their unperturbed state. Using deconvolution and 3D image registration, we were able to identify fluorescently labeled membrane structures analyzed by cryo-electron tomography. In situ cryo-electron tomography of A549 cells as well as primary Human Small Airway Epithelial Cells revealed that LBs are composed of membrane sheets frequently attached to the limiting membrane through “T”-junctions. We report a so far undescribed outer membrane dome protein complex (OMDP) on the limiting membrane of LBs. Our data suggest that LB biogenesis is driven by parallel membrane sheet import and by the curvature of the limiting membrane to maximize lipid storage capacity.


Cell Reports ◽  
2020 ◽  
Vol 33 (10) ◽  
pp. 108477
Author(s):  
Hideaki Morishita ◽  
Yuki Kanda ◽  
Takeshi Kaizuka ◽  
Haruka Chino ◽  
Kazuki Nakao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document