CXII. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition.—Part IV. The approximate evaluation of secondary scattered light

Author(s):  
A. Hammad ◽  
S.A.M. Hassanein
Author(s):  
H.J. Zuo ◽  
M.W. Price ◽  
R.D. Griffin ◽  
R.A. Andrews ◽  
G.M. Janowski

The II-VI semiconducting alloys, such as mercury zinc telluride (MZT), have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities and crystallographic imperfections adversly affect the performance of MZT infrared detectors. One source of imperfections in MZT is gravity-induced convection during directional solidification. Crystal growth experiments conducted in space should minimize gravity-induced convection and thereby the density of related crystallographic defects. The limited amount of time available during Space Shuttle experiments and the need for a sample of uniform composition requires the elimination of the initial composition transient which occurs in directionally solidified alloys. One method of eluding this initial transient involves directionally solidifying a portion of the sample and then quenching the remainder prior to the space experiment. During the space experiment, the MZT sample is back-melted to exactly the point at which directional solidification was stopped on earth. The directional solidification process then continues.


1987 ◽  
Vol 153 (10) ◽  
pp. 363 ◽  
Author(s):  
Evgenii B. Aleksandrov ◽  
V.S. Zapasskii

2001 ◽  
Vol 66 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Čestmír Koňák ◽  
Jaroslav Holoubek ◽  
Petr Štěpánek

A time-resolved small-angle light scattering apparatus equipped with azimuthal integration by means of a conical lens or software analysis of scattering patterns detected with a CCD camera was developed. Averaging allows a significant reduction of the signal-to-noise ratio of scattered light and makes this technique suitable for investigation of phase separation kinetics. Examples of applications to time evolution of phase separation in concentrated statistical copolymer solutions and dissolution of phase-separated domains in polymer blends are given.


1989 ◽  
Vol 177 ◽  
Author(s):  
D. J. Pine ◽  
D. A. Weitz ◽  
D. J. Durian ◽  
P. N. Pusey ◽  
R. J. A. Tough

ABSTRACTOn a short time scale, Brownian particles undergo a transition from initially ballistic trajectories to diffusive motion. Hydrodynamic interactions with the surrounding fluid lead to a complex time dependence of this transition. We directly probe this transition for colloidal particles by measuring the autocorrelation function of multiply scattered light and observe the effects of the slow power-law decay of the velocity autocorrelation function.


Sign in / Sign up

Export Citation Format

Share Document