phase separation kinetics
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2467
Author(s):  
Tyser Allami ◽  
Ahmed Alamiery ◽  
Mohamed H. Nassir ◽  
Amir H. Kadhum

The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for further applications in biomedical and environmental fields. In addition, other research focuses on widening the plastic features and adjusting the PU–polyimide ratio to create elastomer of the poly(urethane-imide). Regarding TPU- and PU-nanocomposite, numerous studies investigated the incorporation of inorganic nanofillers such as carbon or clay to incorporating TPU-nanocomposite in several applications. Additionally, the complete exfoliation was observed up to 5% and 3% of TPU–clay modified with 12 amino lauric acid and benzidine, respectively. PU-nanocomposite of 5 wt.% Cloisite®30B showed an increase in modulus and tensile strength by 110% and 160%, respectively. However, the nanocomposite PU-0.5 wt.% Carbone Nanotubes (CNTs) show an increase in the tensile modulus by 30% to 90% for blown and flat films, respectively. Coating PU influences stress-strain behavior because of the interaction between the soft segment and physical crosslinkers. The thermophysical properties of the TPU matrix have shown two glass transition temperatures (Tg’s) corresponding to the soft and the hard segment. Adding a small amount of tethered clay shifts Tg for both segments by 44 °C and 13 °C, respectively, while adding clay from 1 to 5 wt.% results in increasing the thermal stability of TPU composite from 12 to 34 °C, respectively. The differential scanning calorimetry (DSC) was used to investigate the phase structure of PU dispersion, showing an increase in thermal stability, solubility, and flexibility. Regarding the electrical properties, the maximum piezoresistivity (10 S/m) of 7.4 wt.% MWCNT was enhanced by 92.92%. The chemical structure of the PU–CNT composite has shown a degree of agglomeration under disruption of the sp2 carbon structure. However, with extended graphene loading to 5.7 wt.%, piezoresistivity could hit 10-1 S/m, less than 100 times that of PU. In addition to electrical properties, the acoustic behavior of MWCNT (0.35 wt.%)/SiO2 (0.2 wt.%)/PU has shown sound absorption of 80 dB compared to the PU foam sample. Other nanofillers, such as SiO2, TiO2, ZnO, Al2O3, were studied showing an improvement in the thermal stability of the polymer and enhancing scratch and abrasion resistance.


Soft Matter ◽  
2021 ◽  
Author(s):  
Ashish Kumar Singh ◽  
Avinash Chauhan ◽  
Sanjay Puri ◽  
Awaneesh Singh

We studied phase separation kinetics of block copolymer melts while passing them through alternate photo-induced bond breaking (on) and recombination (off) reaction cycles, and discussed its effect on evolution morphologies, scaling functions, and length.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Nahas ◽  
S. Prokhorenko ◽  
Q. Zhang ◽  
V. Govinden ◽  
N. Valanoor ◽  
...  

AbstractWhilst often discussed as non-trivial phases of low-dimensional ferroelectrics, modulated polar phases such as the dipolar maze and the nano-bubble state have been appraised as essentially distinct. Here we emphasize their topological nature and show that these self-patterned polar states, but also additional mesophases such as the disconnected labyrinthine phase and the mixed bimeron-skyrmion phase, can be fathomed in their plurality through the unifying canvas of phase separation kinetics. Under compressive strain, varying the control parameter, i.e., the external electric field, conditions the nonequilibrium self-assembly of domains, and bridges nucleation and spinodal decomposition via the sequential onset of topological transitions. The evolutive topology of these polar textures is driven by the (re)combination of the elementary topological defects, merons and antimerons, into a plethora of composite topological defects such as the fourfold junctions, the bimeron and the target skyrmion. Moreover, we demonstrate that these manipulable defects are stable at room temperature and feature enhanced functionalities, appealing for devising future topological-based nanoelectronics.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1209
Author(s):  
Wooseob Shin ◽  
Jeonghwan Lee ◽  
Kunok Chang

The effects of inhomogeneous elasticity and dislocation on the microstructure evolution of α′ precipitate in a Fe-Cr system was investigated using a Computer Coupling of Phase Diagrams and Thermochemistry (CALPHAD)-type free energy incorporated phase-field method. In order to simulate the precipitation behavior by phase-field modeling in consideration of inhomogeneous elasticity, a Multiphysics Object-Oriented Simulation Environment (MOOSE) framework was used, which makes it easy to use powerful numerical means such as parallel computing and finite element method (FEM) solver. The effect of inhomogeneous elasticity due to the compositional inhomogeneity or the presence of dislocations affects the thermodynamic properties of the system was investigated, such as the lowest Cr concentration at which spinodal decomposition occurs. The effect of inhomogeneous elasticity on phase separation kinetics is also studied. Finally, we analyzed how inhomogeneous elasticity caused by compositional fluctuation or dislocation affects microstructure characteristics such as ratio between maximum precipitate size with respect to the average on early stage and later stage, respectively.


2020 ◽  
Vol 4 (1) ◽  
pp. 17-26
Author(s):  
Abhijeet Shinde ◽  
Xuezhen Wang ◽  
Yi-Hsien Yu ◽  
Zhengdong Cheng

AbstractWe studied isotropic-nematic (I-N) phase separation via gravity sedimentation in suspensions of plate-like colloidal particles of identical thickness but different lateral sizes (diameters). It is well-known that I-N phase transition occurs at a higher concentration for particles with larger aspect ratio (thickness/diameter) than for particles with smaller aspect ratio. Here we report that for the larger aspect ratios of nanoplates, gravity-driven I-N phase separation is faster. In a homogenously mixed I-N biphasic suspension of nanoplates, nematic tactoids nucleate, grow, and then undergo sedimentation in gravity, leading to the formation of a clear horizontal interface between the I and N phase. For I-N coexistent suspension of nanoplates with different aspect ratios but the same amount of nematic fractions, the larger the aspect ratio, the faster the formation of nematic tactoids and interface between isotropic liquid and nematic liquid crystal phase. The tactoid formation rate is governed by the rotational and translational diffusion rates, which are faster at larger aspect ratios. The time required for I-N separation (t*, seconds) varies inversely with the mean aspect ratio (< ξ >) of nanoplates and follows the relation, t* = α < ξ >n, where α = 0.97 ± 1.30 s and n = −2.1 ± 0.2. The phase separation kinetics studied in our experiments offers guidance for the selection of aspect ratio of nanoplates for samples to be studied at the International Space Station (ISS).


2020 ◽  
Vol 4 (10) ◽  
pp. 2863-2880 ◽  
Author(s):  
Hong Zhang ◽  
Yanxun Li ◽  
Xuning Zhang ◽  
Yuan Zhang ◽  
Huiqiong Zhou

Surface properties control provides tools for tailoring the active layer self-assembly and phase separation kinetics, which plays an important role in the morphology by directing phase separation during film deposition, drying and annealing.


Sign in / Sign up

Export Citation Format

Share Document