scholarly journals XLVI. On the rotation of the equipotential lines of an electric current by magnetic action

Author(s):  
E.H. Hall
1849 ◽  
Vol 139 ◽  
pp. 19-41 ◽  

2535. Zinc.—Plates of zinc broken out of crystallized masses gave irregular indications, and, being magnetic from the impurity in them, the effects might be due entirely to that circumstance. Pure zinc was thrown down electro-chemically on platina from solutions of the chloride and the sulphate. The former occurred in ramifying dendritic associations of small crystal; the latter in a compact close form. Both were free from magnetic action and freely diamagnetic, but neither showed any trace of the magnecrystallic action. 2536. Titanium.—Some good crystals of titanium obtained from the bottom of an iron furnace, were cleansed by the alternate action of acids and fluxes until as clear from iron as I could procure them. They were bright, well-formed and magnetic (2371), and contained iron, I think, diffused through their whole mass, for nitro-muriatic acid, by long boiling, continually removed titanium and iron from them. These crystals had a certain magnetic property which I am inclined to refer to their crystalline condition. When between the poles of the electro-magnet, they set; and when the electric current was discontinued, they still set between the poles of the enfeebled magnet as they did before. If left to itself a crystal always took the same position, showing that it was constantly rendered magnetic in the same direc­tion. But if a crystal was placed and kept in another position between the magnetic poles whilst the electric current was on, and afterwards the current suspended, and then the crystal set free, it pointed between the poles of the enfeebled magnet in this new direction; showing that the magnetism was in a different direction in the body of the crystal to that which it had before. If now the magnet were reinvigorated by the electric current, the crystal instantly spun round and took a magnetic state in the first or original direction. The crystals could in fact become magnetized in any direction, but there was one direction in which they could be magnetized with a facility and force greater than in any other. From the appearances I am inclined to refer this to the crystalline condition, but it may be due to an irregular diffusion of iron in the masses of titanium. The crystals were too small for me to make out the point clearly.


For a long time past the author had felt a strong persuasion, derived from philosophical considerations, that among the several powers of nature which in their various forms of operation on matter produce different classes of effects, there exists an intimate relation; that they are connected by a common origin, have a reciprocal dependence on one another, and are capable, under certain conditions, of being converted the one into the other. Already have electricity and magnetism afforded evidence of this mutual convertibility; and in extending his views to a wider sphere, the author became convinced that these powers must have relations with light also. Until lately his endeavours to detect these relations were unsuccessful; but at length, on instituting a more searching interrogation of nature, he arrived at the discovery recorded in the present paper, namely, that a ray of light may be electrified and magnetized; and that lines of magnetic force may be rendered luminous. The fundamental experiment revealing this new and important fact, which establishes a link of connexion between two great departments of nature, is the following. A ray of light issuing from an Argand lamp is first polarized in the horizontal plane by reflexion from a glass mirror, and then made to pass, for a certain space, through glass composed of silicated borate of lead, on its emergence from which it is viewed through a Nichol's eye-piece, capable of revolving on a horizontal axis, so as to intercept the ray, or allow it to be transmitted, alternately, in the different phases of its revolution. The glass through which the ray passes, and which the author terms the diamagnetic , is placed between the two poles of a powerful electro-magnet, arranged in such a position as that the line of magnetic forces resulting from their combined action shall coincide with, or differ but little from the course of the ray in its passage through the glass. It was then found that if the eye-piece had been so turned as to render the ray invisible to the observer looking through the eye-piece before the electric current had been established, it becomes visible whenever, by the completion of the circuit, the magnetic force is in operation; but instantly becomes again invisible on the cessation of that force by the interruption of the circuit. Further investigation showed that the magnetic action causes the plane of polarization of the polarized ray to rotate, for the ray is again rendered visible by turning the eye-piece to a certain extent; and that the direction of the rotation impressed upon the ray, when the magnetic influence is issuing from the south pole, and proceeding in the same direction as the polarized ray, is right-handed, or similar to that of the motion of the hands of a watch, as estimated by an observer at the eye-piece. The direction in which the rotation takes place will, of course, be reversed by reversing either the course of the ray or the poles of the magnet. Hence it follows that the polarized ray is made to rotate in the same direction as the currents of positive electricity are circulating, both in the helices composing the electro-magnet, and also in the same direction as the hypothetical currents, which, according to Ampere’s theory, circulate in the substance of a steel magnet. The rotatory action was found to be always directly proportional to the intensity of the magnetic force, but not to that of the electric current; and also to be proportional to the length of that portion of the ray which receives the influence. The interposition of substances which occasion no disturbance of the magnetic forces, produces no change in these effects. Magnets consisting only of electric helices act with less power than when armed with iron, and in which magnetic action is consequently more strongly developed.


1860 ◽  
Vol 10 ◽  
pp. 256-269 ◽  

I. Action of the magnet on electric currents transmitted through tubes of any form. The action exerted by a magnet on the luminous electric discharge, passing through a tube or any vessel of glass which contains residual traces of any gas or vapour, may be generally explained, if we regard the discharge as a bundle of elementary currents, which, under the influence of the magnet, change their form, as well as their position within the tube, according to the well-known laws of electro-magnetic action . The concentration of the discharge into one free arch only takes place if the arch be allowed to constitute a part of a line of magnetic force . [According to theory, there is no electro-magnetic action at all exerted on any element of a linear electric current which proceeds along such a line.] This condition, for instance, is fulfilled in the case of an exhausted sphere of glass, through which the discharge is sent by means of two small apertures, if the sphere be put on the iron pieces of an electro-magnet in such a way that the two apertures coincide with any two points of a line of magnetic force.


Sign in / Sign up

Export Citation Format

Share Document