scholarly journals Is the soluble guanylate cyclase pathway the only one available for nitric oxide (NO) signaling?

IUBMB Life ◽  
2007 ◽  
Vol 59 (2) ◽  
pp. 110-112
Author(s):  
Aimee Landar ◽  
Victor Darley-Usmar
2021 ◽  
Author(s):  
S.O. Svitko ◽  
K.S. Koroleva ◽  
G.F. Sitdikova ◽  
K.A. Petrova

Nitric oxide (NO) is a gaseous signaling molecule that regulates a number of physiological functions, including its role in the formation of migraine has been established. NO is endogenously produced in the body from L-arginine by NO synthase. The NO donor, nitroglycerin, is a trigger of migraine in humans and is widely used in the modeling of this disease in animals, which suggests the involvement of components of the NO signaling cascade in the pathogenesis of migraine. Based on the results obtained, it was found that an increase in the concentration of both the substrate for the synthesis of NO, L-arginine, and the NO donor, sodium nitroprusside, has a pro-nociceptive effect in the afferents of the trigeminal nerve. In this case, the effect of sodium nitroprusside is associated with the activation of intracellular soluble guanylate cyclase. Key words: nitric oxide, migraine, trigeminal nerve, L-arginine, guanylate cyclase, sodium nitroprusside, nociception.


2013 ◽  
Vol 33 (4) ◽  
pp. 193-205
Author(s):  
Jie Pan ◽  
Fangfang Zhong ◽  
Xiangshi Tan

AbstractNitric oxide (NO), a signaling molecule in the cardiovascular system, has been receiving increasing attention since Furchgott, Ignarro, and Murad were awarded the Nobel Prize in Physiology and Medicine for the discovery in 1998. Soluble guanylate cyclase (sGC), as an NO receptor, is a key metalloprotein in mediating NO signaling transduction. sGC is activated by NO to catalyze the conversion of guanosine 5′-triphosphate (GTP) to cyclic guanylate monophosphate (cGMP). The dysfunction of NO signaling results in many pathological disorders, including several cardiovascular diseases, such as arterial hypertension, pulmonary hypertension, heart failure and so on. Significant advances in its structure, function, mechanism, and physiological and pathological roles have been made throughout the past 15 years. We herein review the progress of sGC on structural, functional investigations, as well as the proposed activation/deactivation mechanism. The heme-dependent sGC stimulators and heme-independent sGC activators have also been summarized briefly.


2010 ◽  
Vol 28 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Yuliya Sharkovska ◽  
Philipp Kalk ◽  
Bettina Lawrenz ◽  
Michael Godes ◽  
Linda Sarah Hoffmann ◽  
...  

1997 ◽  
Vol 320 (2-3) ◽  
pp. 161-166 ◽  
Author(s):  
Che-Ming Teng ◽  
Chin-Chung Wu ◽  
Feng-Nien Ko ◽  
Fang-Yu Lee ◽  
Sheng-Chu Kuo

Nitric Oxide ◽  
2006 ◽  
Vol 14 (4) ◽  
pp. 4-5
Author(s):  
Patrick Yves Sips ◽  
Emmanuel Buys ◽  
Elke Rogge ◽  
Sofie Nimmegeers ◽  
Mieke Dewerchin ◽  
...  

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Kimberly Long ◽  
Kim Tang ◽  
Renee Sarno ◽  
Rob Solinga ◽  
Jaime Masferrer

2007 ◽  
Vol 282 (49) ◽  
pp. 35741-35748 ◽  
Author(s):  
Emily R. Derbyshire ◽  
Michael A. Marletta

Nitric oxide (NO) is a physiologically relevant activator of the hemoprotein soluble guanylate cyclase (sGC). In the presence of NO, sGC is activated several hundredfold above the basal level by a mechanism that remains to be elucidated. The heme ligand n-butyl isocyanide (BIC) was used to probe the mechanism of NO activation of sGC. Electronic absorption spectroscopy was used to show that BIC binds to the sGC heme, forming a 6-coordinate complex with an absorbance maximum at 429 nm. BIC activates sGC 2-5-fold, and synergizes with the allosteric activator YC-1, to activate the enzyme 15-25-fold. YC-1 activates the sGC-BIC complex, and leads to an increase in both the Vmax and Km. BIC was also used to probe the mechanism of NO activation. The activity of the sGC-BIC complex increases 15-fold in the presence of NO, without displacing BIC at the heme, which is consistent with previous reports that proposed the involvement of a non-heme NO binding site in the activation process.


Sign in / Sign up

Export Citation Format

Share Document