sodium nitroprusside
Recently Published Documents


TOTAL DOCUMENTS

2479
(FIVE YEARS 189)

H-INDEX

72
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ruining Zhang ◽  
Zhouyu Yuan ◽  
Yuwei Jiang ◽  
Fan Jiang ◽  
Ping Chen

Surface browning after harvest is the primary constraint affecting the storage life and market circulation of rambutans. In this study, rambutan fruits were soaked in sodium nitroprusside at different concentrations and stored at 25°C for 8 days to explore the effects on postharvest quality and browning. The weight loss, browning index and superoxide anion radical, hydrogen peroxide and malondialdehyde contents of the treated fruits were reduced compared to those of the control fruits (soaked in distilled water). And fruits treated with sodium nitroprusside had a higher total phenolic content and lower polyphenol oxidase and peroxidase activity. In addition, compared with the control, the treated fruits exhibited higher phenylalanine ammonia lyase, ascorbate peroxidase and superoxide dismutase activities; titratable acidity; and soluble solid, vitamin C and protein contents, indicating high fruit quality. Overall, sodium nitroprusside treatment at 200 μmol L−1 demonstrated the most positive preservation effects. Therefore, sodium nitroprusside treatment, particularly at 200 μmol L−1, can be used as an eco-friendly, safe and convenient method for postharvest quality management and high-efficiency preservation of rambutan fruits.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1981
Author(s):  
Abolghassem Emamverdian ◽  
Yulong Ding ◽  
James Barker ◽  
Farzad Mokhberdoran ◽  
Muthusamy Ramakrishnan ◽  
...  

Recently, nitric oxide (NO) has been reported to increase plant resistance to heavy metal stress. In this regard, an in vitro tissue culture experiment was conducted to evaluate the role of the NO donor sodium nitroprusside (SNP) in the alleviation of heavy metal toxicity in a bamboo species (Arundinaria pygmaea) under lead (Pb) and cadmium (Cd) toxicity. The treatment included 200 µmol of heavy metals (Pb and Cd) alone and in combination with 200 µM SNP: NO donor, 0.1% Hb, bovine hemoglobin (NO scavenger), and 50 µM L-NAME, N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor) in four replications in comparison to controls. The results demonstrated that the addition of L-NAME and Hb as an NO synthase inhibitor and NO scavenger significantly increased oxidative stress and injured the cell membrane of the bamboo species. The addition of sodium nitroprusside (SNP) for NO synthesis increased antioxidant activity, protein content, photosynthetic properties, plant biomass, and plant growth under heavy metal (Pb and Cd) toxicity. It was concluded that NO can increase plant tolerance for metal toxicity with some key mechanisms, such as increasing antioxidant activities, limiting metal translocation from roots to shoots, and diminishing metal accumulation in the roots, shoots, and stems of bamboo species under heavy metal toxicity (Pb and Cd).


2021 ◽  
Author(s):  
S.O. Svitko ◽  
K.S. Koroleva ◽  
G.F. Sitdikova ◽  
K.A. Petrova

Nitric oxide (NO) is a gaseous signaling molecule that regulates a number of physiological functions, including its role in the formation of migraine has been established. NO is endogenously produced in the body from L-arginine by NO synthase. The NO donor, nitroglycerin, is a trigger of migraine in humans and is widely used in the modeling of this disease in animals, which suggests the involvement of components of the NO signaling cascade in the pathogenesis of migraine. Based on the results obtained, it was found that an increase in the concentration of both the substrate for the synthesis of NO, L-arginine, and the NO donor, sodium nitroprusside, has a pro-nociceptive effect in the afferents of the trigeminal nerve. In this case, the effect of sodium nitroprusside is associated with the activation of intracellular soluble guanylate cyclase. Key words: nitric oxide, migraine, trigeminal nerve, L-arginine, guanylate cyclase, sodium nitroprusside, nociception.


Author(s):  
Sathish Sundararajan ◽  
Rekha Shanmugam ◽  
Venkatesh Rajendran ◽  
Hari Priya Sivakumar ◽  
Sathishkumar Ramalingam

2021 ◽  
Vol 55 (6) ◽  
pp. 548-557
Author(s):  
Yu. V. Kolomiiets ◽  
I. P. Grygoryuk ◽  
L. M. Butsenko ◽  
A. I. Emets ◽  
Ya. B. Blume

Sign in / Sign up

Export Citation Format

Share Document