Reviews in Inorganic Chemistry
Latest Publications


TOTAL DOCUMENTS

444
(FIVE YEARS 63)

H-INDEX

25
(FIVE YEARS 4)

Published By Walter De Gruyter Gmbh

2191-0227, 0193-4929

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Milan Melník ◽  
Peter Mikuš

Abstract This review covers almost 30 Pt(II) complexes of the composition Pt(η3-P1X1P2)(Y), (X1 = BL, SL, or SiL), (Y = H, OL, NL, CL, Cl, PL, or I) and Pt(η3-P1P2Si1)(CH3). Heterotridentate ligands form six types of metallocyclic rings: P1CNB1NCP2, P1C2S1C2P2, P1C2Si1C2P2, (most common), P1CNSi1NCP2, and P1C3Si1C3P2 with common B1, S1, or Si1 atoms. In P1C2P2C3Si1 the P2 atom is common. The structural data (Pt–L, L–Pt–L) are analyzed and discussed with an attention to the distortion of a square-planar geometry about Pt(II) atoms as well as trans-influence. The sum of Pt–L(x4) bond distances growing with covalent radius of the X1 and Y atoms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahwash Mahar Gul ◽  
Khuram Shahzad Ahmad

Abstract Photocatalysis by utilizing semiconductors for the removal of toxic pollutants has gained tremendous interest for remediation purposes. The organic pollutants usually include; pesticides, dyes and other phenolic compounds. An imperative restraint associated with the photocatalytic effectiveness of the catalyst is the rapid recombination of the light generated electrons and holes. The particle agglomeration and electron-hole recombination hinders the rate of pollutant removal. For decades, researchers have used metal-sulfides efficiently for photocatalytic dye degradation. The recent use of hybrid nanomaterials with the combination of graphene derivatives such as graphene oxide and reduced graphene oxide (GO/rGO)-metal sulfide has gained interest. These composites have displayed an impressive upsurge in the photocatalytic activity of materials. The current review describes the various researches on dye photodegradation by employing (GO/rGO)-metal sulfide, exhibiting a boosted potential for photocatalytic dye degradation. A comprehensive study on (CuS, ZnS and CdS)–GO/rGO hybrid composites have been discussed in detail for effective photocatalytic dye degradation in this review. Astonishingly improved dye degradation rates were observed in all these studies employing such hybrid composites. The several studies described in the review highlighted the varying degradation rates based on diverse research parameters and efficacy of graphene derivatives for enhancement of photocatalytic activity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Faisal Rehman ◽  
Fida Hussain Memon ◽  
Zubeda Bhatti ◽  
Muzaffar Iqbal ◽  
Faheeda Soomro ◽  
...  

Abstract Graphene-based membranes have got significant attention in wastewater treatment, desalination, gas separation, pervaporation, fuel cell, energy storage applications due to their supreme properties. Recently, studies have confirmed that graphene based membranes can also use for separation of isotope due to their ideal thickness, large surface area, good affinity, 2D structure etc. Herein, we review the latest groundbreaking progresses in both theoretically and experimentally chemical science and engineering of both nanoporous and lamellar graphene-based membrane for separation of different isotopes. Especially focus will be given on the current issues, engineering hurdles, and limitations of membranes designed for isotope separation. Finally, we offer our experiences on how to overcome these issues, and present an ideas for future improvement and research directions. We hope, this article is provide a timely knowledge and information to scientific communities, and those who are already working in this direction.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Sidra Yaqoob ◽  
Mahwash Mahar Gul

Abstract The scientific community is inclined towards addressing environmental and energy concerns through sustainable means. Conventional processes such as chemical synthesis, involve the usage of environmentally harmful ligands and high tech facilities, which are time-consuming, expensive, energy-intensive, and require extreme conditions for synthesis. Plant-based synthesis is valuable and sustainable for the ecosystem. The use of plant-based precursors for nanoparticle synthesis eliminates the menace of toxic waste contamination. The present review elucidates that the plant based synthesized iron oxide and manganese oxide nanoparticles have tremendous and exceptional applications in various fields such as antimicrobial and antioxidative domains, environmental, electrical and sensing properties. Hence, the literature reviewed explains that plant based synthesis of nanoparticles is an adept and preferred technique. These important transition oxide metal nanoparticles have great applicability in ecological, environmental science as well as electrochemistry and sensing technology. Both these metal oxides display a stable and adaptable nature, which can be functionalized for a specific application, thus exhibiting great potential for efficiency. The current review epitomizes all the latest reported work on the synthesis of iron and manganese oxide nanoparticles through a greener approach along with explaining various significant applications keeping in view the concept of sustainability.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ezzat Khan ◽  
Muhammad Hanif ◽  
Muhammad Salim Akhtar

Abstract Schiff bases are in the field of medicinal and material chemistry for a long time. There are several advancements from time to time towards facile synthesis and potential applications. As medicines they have been applied as organic molecules as well as their metal complexes. The activities of metal complexes have been found to increase due to increase lipophilicity in comparison to the corresponding free ligand. Besides simple coordination compounds they have been applied as ionic liquid (IL)- supported and IL-tagged species with far enhanced efficiency. Among metal complexes recent advancement deals with photodynamic therapy to treat a number of tumors with fewer side effects. Schiff bases are efficient ligands and their complexes with almost all metal ions are reported. This mini-review article deals with complexes of Schiff bases with biologically compatible metal ions, Co(II), Cu(II), Zn(II), Pd(II), Ag(I), Pt(II) and their potential uses to combat cancerous cells. Strong hopes are associated with photodynamic therapy and IL-tagged and IL-supported Schiff bases and their complexes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Debasis Borah ◽  
Harshajit Nath ◽  
Hemaprobha Saikia

Abstract Bentonite clay is one of the oldest clays that humankind has been using from ancient times as traditional habits and remedies. In recent years researchers have found many applications of bentonite clay due to its various physio-chemical properties. In the present work, various physical and chemical properties of bentonite such as surface area, adsorption, swelling properties, cation exchange properties, etc. have been studied. This study also includes various procedures of modification of bentonite clay into Chitosan/Ag-bentonite composite, Fe-Modified bentonite, Hydroxyl-Fe-pillared-bentonite, Organo Bentonite, Organophilic clay, Arenesulfonic Acid-Functionalized Bentonite, Bentonite clay modified with Nb2O5. The study reveals that bentonite clay has large surface area due to similar structure with montmorillonite and it is found that the functionality of bentonite can be increased by increasing total surface area of the clay. Due to high cation exchangeability of bentonite, various cations can be incorporated into it. After purification and modification, the absorbent aluminum phyllosilicate bentonite clay can be used as an efficient catalyst in various types of catalytic reactions. Moreover, bentonite clay can be applied in various field like drilling, civil engineering, agriculture and water treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Munazzah Yaqoob ◽  
Mahvish Abbasi ◽  
Hira Anwar ◽  
Javed Iqbal ◽  
Mohammad Asad ◽  
...  

Abstract N-heterocyclic carbenes (NHCs) are an eminent class of carbenes having a heterocyclic ring in which a divalent carbon atom is attached directly to a nitrogen atom. In the NHCs, the donation of lone pair is another important research in the dative bonding and not only in NHCs the dative bond plays a functionalized role in the other classes of complex formation like ylidones L → E ← L and carbones L → C ← L. M–NHC bond is L-M sigma-dative bond and NHCs are considered as strong sigma-donor ligands. The clear picture of the M–NHC bond can be better understood by M–NHC pi-interaction. M-L pi interaction is comprised of two steps. One is L → M sigma-donation and M → L π* back bonding. This dative donor nature of NHC and also its behavior in organoselenium is studied through DFT in which it’s optimized structure, bond lengths, molecular vibrations are calculated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saeed Akhtar Bhatti ◽  
Fida Hussain Memon ◽  
Faisal Rehman ◽  
Zubeda Bhatti ◽  
Tehsin Naqvi ◽  
...  

Abstract Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.


Sign in / Sign up

Export Citation Format

Share Document