scholarly journals Intersections of an Interval By a Difference of a Compound Poisson Process and a Compound Renewal Process

2009 ◽  
Vol 25 (2) ◽  
pp. 270-300 ◽  
Author(s):  
V. Kadankov ◽  
T. Kadankova ◽  
N. Veraverbeke
2004 ◽  
Vol 41 (2) ◽  
pp. 508-523 ◽  
Author(s):  
Antonis Economou

Recently, several authors have studied the transient and the equilibrium behaviour of stochastic population processes with total catastrophes. These models are reasonable for modelling populations that are exposed to extreme disastrous phenomena. However, under mild disastrous conditions, the appropriate model is a stochastic process subject to binomial catastrophes. In the present paper we consider a special such model in which a population evolves according to a compound Poisson process and catastrophes occur according to a renewal process. Every individual of the population survives after a catastrophe with probability p, independently of anything else, i.e. the population size is reduced according to a binomial distribution. We study the equilibrium distribution of this process and we derive an algorithmic procedure for its approximate computation. Bounds on the error of this approximation are also included.


2004 ◽  
Vol 41 (02) ◽  
pp. 508-523 ◽  
Author(s):  
Antonis Economou

Recently, several authors have studied the transient and the equilibrium behaviour of stochastic population processes with total catastrophes. These models are reasonable for modelling populations that are exposed to extreme disastrous phenomena. However, under mild disastrous conditions, the appropriate model is a stochastic process subject to binomial catastrophes. In the present paper we consider a special such model in which a population evolves according to a compound Poisson process and catastrophes occur according to a renewal process. Every individual of the population survives after a catastrophe with probabilityp, independently of anything else, i.e. the population size is reduced according to a binomial distribution. We study the equilibrium distribution of this process and we derive an algorithmic procedure for its approximate computation. Bounds on the error of this approximation are also included.


1984 ◽  
Vol 16 (2) ◽  
pp. 378-401 ◽  
Author(s):  
A. G. De kok ◽  
H. C. Tijms ◽  
F. A. Van der Duyn Schouten

We consider a production-inventory problem in which the production rate can be continuously controlled in order to cope with random fluctuations in the demand. The demand process for a single product is a compound Poisson process. Excess demand is backlogged. Two production rates are available and the inventory level is continuously controlled by a switch-over rule characterized by two critical numbers. In accordance with common practice, we consider service measures such as the average number of stockouts per unit time and the fraction of demand to be met directly from stock on hand. The purpose of the paper is to derive practically useful approximations for the switch-over levels of the control rule such that a pre-specified value of the service level is achieved.


Sign in / Sign up

Export Citation Format

Share Document