Discrete Time Minimal Repair Process and Its Reliability Applications under Random Environments

2022 ◽  
pp. 1-22
Author(s):  
Ji Hwan Cha ◽  
Nikolaos Limnios
1981 ◽  
Vol 18 (01) ◽  
pp. 19-30 ◽  
Author(s):  
Robert Cogburn ◽  
William C. Torrez

A generalization to continuous time is given for a discrete-time model of a birth and death process in a random environment. Some important properties of this process in the continuous-time setting are stated and proved including instability and extinction conditions, and when suitable absorbing barriers have been defined, methods are given for the calculation of extinction probabilities and the expected duration of the process.


1973 ◽  
Vol 5 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Norman Kaplan

A population model is constructed which combines the ideas of a discrete time branching process with random environments and a continuous time non-homogeneous Markov branching process. The extinction problem is considered and necessary and sufficient conditions for extinction are determined. Also discussed are limit theorems for what corresponds to the supercritical case.


1981 ◽  
Vol 18 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Robert Cogburn ◽  
William C. Torrez

A generalization to continuous time is given for a discrete-time model of a birth and death process in a random environment. Some important properties of this process in the continuous-time setting are stated and proved including instability and extinction conditions, and when suitable absorbing barriers have been defined, methods are given for the calculation of extinction probabilities and the expected duration of the process.


2012 ◽  
Vol 29 (03) ◽  
pp. 1240020
Author(s):  
FU-MIN CHANG ◽  
YU-HUNG CHIEN

This paper presents the effects of a free minimal repair warranty (FMRW) on the periodic replacement policy under discrete operating circumstance. For the discrete-time periodic replacement policy, a product is preventively replaced at pre-specified operation cycles N, 2N, 3N, … (N = 1, 2, …). When the product fails, a minimal repair is performed at the time of failure and the failure rate is not disturbed by each repair. From the customer's perspective, the cost models are developed for both a warranted and a nonwarranted product, and the corresponding optimal periodic replacement policies are derived such that the long-run expected cost rates are minimized. Under the assumption of the discrete time increasing failure rate (IFR), the existence and uniqueness of the optimal N* are shown, and the impacts of a FMRW on the optimal replacement policies are investigated analytically. We found that the optimal N* for a warranted product should be adjusted toward the end of the warranty period.


1973 ◽  
Vol 5 (01) ◽  
pp. 37-54 ◽  
Author(s):  
Norman Kaplan

A population model is constructed which combines the ideas of a discrete time branching process with random environments and a continuous time non-homogeneous Markov branching process. The extinction problem is considered and necessary and sufficient conditions for extinction are determined. Also discussed are limit theorems for what corresponds to the supercritical case.


1992 ◽  
Vol 6 (2) ◽  
pp. 245-255 ◽  
Author(s):  
S. N. U. A. Kirmani ◽  
Rmaesh C. Gupta

Some monotonicity properties and bounds on expectations of certain functions of minimal repair times and interminimal repair times are obtained under assumptions on the aging characteristics of the equipment under maintenance.


2017 ◽  
Vol 5 (2) ◽  
pp. 176-192
Author(s):  
Shaojun Lan ◽  
Yinghui Tang

Abstract This paper deals with a discrete-time Geo/Geo/1 queueing system with working breakdowns in which customers arrive at the system in variable input rates according to the states of the server. The server may be subject to breakdowns at random when it is in operation. As soon as the server fails, a repair process immediately begins. During the repair period, the defective server still provides service for the waiting customers at a lower service rate rather than completely stopping service. We analyze the stability condition for the considered system. Using the probability generating function technique, we obtain the probability generating function of the steady-state queue size distribution. Also, various important performance measures are derived explicitly. Furthermore, some numerical results are provided to carry out the sensitivity analysis so as to illustrate the effect of different parameters on the system performance measures. Finally, an operating cost function is formulated to model a computer system and the parabolic method is employed to numerically find the optimum service rate in working breakdown period.


1989 ◽  
Vol 3 (3) ◽  
pp. 381-391 ◽  
Author(s):  
S.N.U.A. Kirmani ◽  
Ramesh C. Gupta

Some properties of repair age (the elapsed time since the last repair) and the residual repair life (the time until the next repair) are studied for the minimal repair process under various assumptions on the aging characteristics of the equipment under maintenance. Bounds on expected repair age and expected residual repair life are obtained. Some characterizations of the Poisson process are also proved.


Sign in / Sign up

Export Citation Format

Share Document