Influence of weft yarn diameter on runoff erosion control performance of woven geomesh

2018 ◽  
Vol 16 (3) ◽  
pp. 427-441 ◽  
Author(s):  
S. Suresh Kumar ◽  
Vinay Kumar Midha
2008 ◽  
Vol 16 (4) ◽  
pp. 257-266 ◽  
Author(s):  
C.G. Dorahy ◽  
I. McMaster ◽  
A.D. Pirie ◽  
P. Pengelly ◽  
L.M. Muirhead ◽  
...  

2015 ◽  
Vol 71 (2) ◽  
pp. I_1135-I_1140 ◽  
Author(s):  
Keisuke MURAKAMI ◽  
Shinji SATO ◽  
Ryuichiro NISHI ◽  
Hiroki MATSUDA ◽  
Yoshio SUWA ◽  
...  

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kura Alemayehu Beyene ◽  
Wassie Mengie ◽  
Chirato Godana Korra

Purpose The purpose of this study is to investigate the effects of weft yarn diameter and pick density on the properties of surface roughness (SMD) of 3/1 (Z) twill-woven fabrics in three measurement directions weft (0°), the warp (90°) and the diagonal (45°). Design/methodology/approach Nine 3/1 (Z) twill samples were prepared with two factors and three levels and their roughness values were measured in the weft (0°), warp (90°) and diagonal (45°) directions of 3/1 (Z) twill fabrics using the Kawabata-FB4 instrument. Analysis of variance (ANOVA) is used to determine the effect of weft yarn diameter and pick density on SMD properties and comparisons were done in the weft (0°), the warp (90°) and the diagonal (45°) directions. Findings From experimental analysis, weft yarn diameter and pick density affect SMD of 3/1 (Z) twill-woven fabrics in both diagonal (45°) and weft (0°) directions but slightly affect warp (90°) direction. Maximum SMD values were observed in diagonal (45°) directions and the minimum was in warp (90°) directions of fabrics. Weft yarn diameter and pick density are statistically significant on SMD values of 3/1 (Z) twill-woven fabrics for three directions at a 95% confidence interval. Parameter variation in weft directions of 3/1 (Z) twill-woven fabrics also varies SMD values in three directions measurements Originality/value The findings of this study can be usually used for textile technology, industries and laboratories to create a basic understanding for measuring roughness properties of 3/1 (Z) twill fabric. It is also possible to identify the surface characterizations in different directions of measurement for their usage in some specific areas of end application like consumer goods, home textiles, technical textiles, etc.


Tekstilec ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 149-158
Author(s):  
Sushma Verma ◽  
◽  
Vinay Kumar Midha ◽  
Awadesh Kumar Choudhary ◽  
◽  
...  

Soil erosion is a serious environmental problem that can be controlled using bioengineering techniques. In using a bioengineering technique, temporary reinforcement is performed with geomeshes until vegetation takes root. In this study, structurally modified jute and coir geomeshes were tested for runoff erosion control and runoff volume over loamy sand at different slope angles. The laboratory results revealed that all parameters (slope angle, type of weave and type of material) had a significant effect on the erosion control performance of geomeshes. The slope angle contributed most (52.34%) to runoff erosion control, followed by weave type (25.79%) and type of material (12.28%). At lower and medium slope angles (of 15o and 30o, respectively) the twill-woven structure of coir geomeshes provided better erosion control than plain- and satin-woven structures, while plain-woven jute geomeshes demonstrated better erosion control at all slope angles. To understand the overall impact, a germination test was also conducted. According to the germination test results, the twill weave of jute geomeshes provided the highest rooting length. In general, plain-woven jute geomeshes are preferred for better erosion control on a high slope angle, while plain and twill can be used on a low slope angle.


Sign in / Sign up

Export Citation Format

Share Document