Rule-based assistive hybrid electric brake system with energy generation for electric vehicle

Author(s):  
Najmuddin M. Jamadar ◽  
H. T. Jadhav
Author(s):  
Rui Cheng ◽  
Jian Dong ◽  
Zuomin Dong

In recent years, the automotive industry has devoted considerable resources to the research and development of hybrid vehicles. Plug-in hybrid electric vehicles (PHEV) present to be the next generation hybrid vehicles that offer the advantages in reducing fossil fuel consumption and lowering emissions without sacrifice vehicle performance, and the ability to utilize renewable energy through charge from the electric grid. In this work, the powertrain model of a series-parallel, multiple-regime plug-in hybrid electric vehicle (SPMR-PHEV) was introduced. As one of the several parallel powertrain modeling, simulation and control system design approaches at University of Victoria, the presented SPMR-PHEV model was developed using rule-based load-leveling energy management strategy (EMS) under the MATLAB/Simulink and SimDriveline environment. In order to validate the model and evaluate the fuel consumption and performance of SPMR-PHEV, a Simulink based Prius model and two different PHEV powertrain models have also been built using Autonomie — a vehicle simulation tool developed by DOE’s Argonne National Laboratory, using the default control logics. Fuel consumption from the three different models were compared using a test drive case consisting of eight times of the US06-City drive cycle. Under the static modeling and simulation method and different control strategies, the SPMR-PHEV model in Simulink/SimDriveline and rule-based load-leveling EMS showed 12.02% fuel economy and powertrain efficiency improvements over the Autonomie model. The new powertrain system model developed using Simulink and SimDrivline could also be used as a generic, modular and flexible vehicle modeling platform to support the integration of powertrain design and control system optimization.


Sign in / Sign up

Export Citation Format

Share Document