scholarly journals Criteria and Experiences on Structural Rehabilitation of Stone Masonry Buildings in Mexico City

2007 ◽  
Vol 1 (1) ◽  
pp. 3-28 ◽  
Author(s):  
Roberto Meli ◽  
Roberto Sánchez-Ramírez
2015 ◽  
Vol 31 (1) ◽  
pp. 215-246 ◽  
Author(s):  
Mohammed Javed ◽  
Guido Magenes ◽  
Bashir Alam ◽  
Akhtar Naeem Khan ◽  
Qaisar Ali ◽  
...  

Unreinforced masonry buildings, constructed with stones or bricks, are common in the northern areas of Pakistan. In the October 2005 Kashmir earthquake, the seismic performance of stone masonry buildings was found to be poor, which was the primary source of fatalities. Unreinforced brick masonry (URBM) buildings, however, performed well even in severely jolted areas. The performance of URBM could have been much better if the affected buildings were constructed by using proper guidelines. Taking lessons from the disaster, an experimental investigation, based on typical geometry and precompression levels of the URBM shear walls in the affected region, was conducted to evaluate their seismic performance. Twelve walls were tested in the in-plane direction using quasi-static cyclic loading. First-story drift ratios for various performance levels in URBM buildings are proposed. The influences of relative precompression level and aspect ratio on the damage pattern, ultimate drift ratio, and equivalent viscous damping of the walls are examined.


2011 ◽  
Vol 10 (1) ◽  
pp. 93-111 ◽  
Author(s):  
Alexandre A. Costa ◽  
António Arêde ◽  
Aníbal Costa ◽  
Carlos Sousa Oliveira

2021 ◽  
Vol 73 (09) ◽  
pp. 881-892

The evaluation of masonry and mosque type structures after the Sivrice Earthquake is presented in this study. Stone masonry buildings exhibited damage such as vertical cracks and splitting at corners, wedge shaped corner failures, diagonal cracking on walls, out-of-plane splitting of walls, and separation of walls from flooring/roofing systems. On the other hand, the separation of flags and caps of minarets was a common example of damage in mosques. Future earthquake damage can be prevented by following design codes and providing adequate supervision for new structures, while strengthening measures are recommended for the existing buildings.


Author(s):  
Marco Corradi ◽  
Adelaja Israel Osofero ◽  
Antonio Borri ◽  
Giulio Castori

Existing un-reinforced masonry buildings made of vaults, columns and brick and multi-leaf stone masonry walls, many of which have historical and cultural importance, constitute a significant portion of construction heritage in Europe and rest of the world. Recent earthquakes in southern Europe have shown the vulnerability of un-reinforced masonry constructions due to masonry almost total lack of tensile resistance. Composite materials offer promising retrofitting possibilities for masonry buildings and present several well-known advantages over existing conventional techniques. The aim of this work is to analyze the effectiveness of seismic-upgrading methods both on un-damaged (preventive reinforcement) and damaged (repair) masonry building. After a brief description of mechanical and physical properties of composite materials, three different applications have been addressed: in-plane reinforcement of masonry walls, extrados and intrados reinforcement of masonry vaults/arches and masonry column confinement with composite materials.


Sign in / Sign up

Export Citation Format

Share Document