Materials Science and Engineering
Latest Publications


TOTAL DOCUMENTS

73
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By IGI Global

9781522517986, 9781522517993

2017 ◽  
pp. 1704-1721 ◽  
Author(s):  
Natalia Sizochenko ◽  
Jerzy Leszczynski

Quantitative structure-activity/property relationships (QSAR/QSPR) approaches that have been applied with success in a number of studies are currently used as indispensable tools in the computational analysis of nanomaterials. Evolution of nano-QSAR methodology to the ranks of novel field of knowledge has resulted in the development of new so-called “nano-descriptors” and extension of the statistical approaches domain. This brief review focuses on the critical analysis of advantages and disadvantages of existing methods of nanoparticles' representation and their analysis in framework of structure-activity relationships. It summarizes recent QSAR/QSPR studies on inorganic nanomaterials. Here the authors describe practices for the QSAR modeling of inorganic nanoparticles, existing datasets, and discuss applicable descriptors and future perspectives of this field. About 50 different (Q)SAR/SPR models for inorganic nanomaterials have been developed during the past 5 years. An analysis of these peer reviewed publications shows that the most popular property of nanoparticles modeled via QSAR is their toxicity towards different bacteria, cell lines, and microorganisms. It has been clearly shown how nano-QSAR can contribute to the elucidation of toxicity mechanisms and different physical properties of inorganic nanomaterials.


2017 ◽  
pp. 1533-1557
Author(s):  
Irshad Ahmad Wani ◽  
Tokeer Ahmad

Nanotechnology is a growing applied science having considerable global socioeconomic value. Nanoscale materials are casting their impact on almost all industries and all areas of society. A wide range of engineered nanoscale products has emerged with widespread applications in fields such as energy, medicine, electronics, plastics, energy and aerospace etc. While the market for nanotechnology products will have grown over one trillion US dollars by 2015, the presence of these material is likely to increase leading to increasing likelihood of exposure. The direct use of nanomaterials in humans for medical and cosmetic purposes dictates vigorous safety assessment of toxicity. Therefore this book chapter provides the detailed toxicity assessment of various types of nanomaterials.


2017 ◽  
pp. 1484-1503
Author(s):  
Ian Mabbett

An innovative academy structure has been applied to materials education in Swansea University, UK. The Materials Academy has multiple levels and layers, from the basic outreach and public engagement required to attract new through to doctoral training. The academy offers multiple paths for progress to all levels. With a diverse mix of talent in the participants, a range of backgrounds and experiences must be catered for in the learning environment, with teaching cycles continuously evaluated to ensure they are appropriate. From the earliest stages of engagement with the academy, learning is student led and industry demand driven. The aim is to fill skills gaps to create an employable workforce for the materials science and engineering industry and contribute positively to economic growth. This chapter described the approach taken at Swansea University, the driving force behind it, explained the features of each stage and interaction of the levels.


2017 ◽  
pp. 1293-1305
Author(s):  
G. Venkateswarlu ◽  
M.J. Davidson ◽  
G.R.N. Tagore ◽  
P. Sammaiah

Friction stir processing (FSP) has been developed on the principles of friction stir welding (FSW) as an effective and efficien new method for grain refinement and microstructural modification, providing intense plastic deformation as well as higher strain rates than other conventional severe plastic deformation methods. FSP produces an equiaxed homogeneous microstructure consisting of fine grains, resulting in the enhancement of the properties of the material at room temperature. The objective of the present paper is to examine the influence of friction stir processing (FSP) parameters namely tool rotational speed (RS), tool traverse speed (TS) and tool tilt angle (TA) on the microstructures of friction stir processed AZ31B-O magnesium alloy. This investigation has focused on the microstructural changes occurred in the dynamically recrystallised nugget zone/ stir zone and the thermo mechanically affected zone during FSP. The results presented in this work indicate that all the three FSP process parameters have a significant effect on the resulting microstructure and also found that the rotational speed has greatly influenced the homogenization of the material. The grain refinement is higher at intermediate rotational speed (1150 rpm), traverse speed (32 mm / min and tilt angle (10). It is established that FSP can be a good grain refinement method for improving the properties of the material.


2017 ◽  
pp. 1165-1181
Author(s):  
Shabir Ahmad Mir ◽  
Manzoor Ahmad Shah

This chapter addresses the potential application of nanotechnology in various areas of the food industry. Nanotechnology is having an impact on several aspects of the food industry, from product development to packaging processes. Nanotechnology is capable of solving the very complex set of engineering and scientific challenges in the food processing industries. This chapter focuses on exploring the role of nanotechnology in enhancing food stability at the various stages of processing. Research has highlighted the prospective role of nanotechnology use in the food sector, including nanoencapsulation, nanopackaging, nanoemulsions, nanonutraceuticals, and nanoadditives. Industries are developing nanomaterials that will make a difference not only in the taste of food but also in food safety and the health benefits that food delivers. While proposed applications of nanotechnologies are wide and varied, developments are met with some caution as progress may be stifled by lack of governance and potential risks.


2017 ◽  
pp. 1133-1164
Author(s):  
Snežana S. Ilić-Stojanović ◽  
Ljubiša B. Nikolić ◽  
Vesna D. Nikolić ◽  
Slobodan D. Petrović

The latest development in the field of smart hydrogels application as drugs carriers is shown in this chapter. Hydrogels are three-dimensional polymer network consisting of at least one hydrophilic monomer. They are insoluble in water, but in the excess presence of water or physiological fluids, swell to the equilibrium state. The amount of absorbed water depends on the chemical composition and the crosslinking degree of 3D hydrogel network and reaches over 1000% of the xerogel weight. Stimuli-responsive hydrogels exhibit significant change of their properties (swelling, color, transparency, conductivity, shape) due to small changes in the external environment conditions (pH, ionic strength, temperature, light wavelength, magnetic or electric fields, ultrasound, or a combination thereof). This smart hydrogels, with different physical and chemical properties, chemical structure and technology of obtaining, show great potential for application in the pharmaceutical industry. The application of smart hydrogels is very promising and at the beginning of the development and exploitation.


2017 ◽  
pp. 1075-1093
Author(s):  
Kenneth L. Roberts

Modern industrial processes are presently adapting to the use of multiscale production techniques where consumer products can be made at the mesoscale and also approaching atomic, or the nanoscale level. Coupled with the fact that classical Science, Technology, Engineering and Mathematics (STEM) education typically does not address nanoscale science and engineering topics in most technical courses, this condition could potentially leave countless STEM students around the world relatively unprepared for the 21st century marketplace. This chapter focused on the development of the nanostructured materials science and engineering discipline from the most recent research and development topics to the integration of this information internationally into the technical classroom. The chapter presented future work on the adaption of the previous research and educational work on this topic at the College of Engineering at King Faisal University in Saudi Arabia and suggestions were offered for successful new nanoscale science and engineering course development.


Author(s):  
Rafael Vargas-Bernal

Gas sensing continues attracting research communities due to its potential applications in the sectors military, industrial and commercial. A special emphasis is placed on the use of carbon nanomaterials such as carbon nanotubes and graphene, as sensing materials. The chapter will be divided as follows: In the first part, a description of the main topologies and materials (carbon nanomaterials plus polymers, metals, ceramics or combinations between these groups) used to fabricate gas sensors based on graphene and carbon nanotubes that are operated by conductance or resistance electrical, is realized. Next, different mathematical models that can be used to simulate gas sensors based on these materials are presented. In the third part, the impact of the graphene and carbon nanotubes on gas sensors is exemplified with technical advances achieved until now. Finally, it is provided a prospective analysis on the role of the gas sensors based on carbon nanomaterials in the next decades.


Author(s):  
Laraib Alam Khan

This chapter gives an overview of Quickstep processing method, which is relatively a new technique for manufacturing composites. In this chapter, different aspects of Quickstep processing are highlighted. Since Quickstep processing is an Out-Of-Autoclave (OOA) technique, a brief description of autoclave processing is provided. Basic principle of Quickstep processing and functionality of typical Quickstep plant are also explained. Due to changed chemo-rheology, methodology for cure optimization of different prepregs and composites are discussed with examples. This chapter also includes the literature survey of different aerospace materials being investigated in Quickstep, the potential of new materials development for this process, the melding technique, in service capabilities of Quickstep cured samples and journey of Quickstep from patent to commercialization. Although the technique is commercialized now, few suggestions in the end are provided for the improvement of process.


Author(s):  
Akhilesh Kumar Shakya ◽  
Kutty Selva Nandakumar

Evaluation of immuno-modulating properties of nanomaterials is important to develop new potential therapeutics for inflammatory diseases and cancer. Activation and suppressive effects of nanomaterials on immune responses occur through various interactions with different host proteins. They can also be engineered as carriers and/or adjuvants for different proteins or antigens. Particles, emulsions, and tubes/rods are the major formats of nanomaterials currently used in biomedical applications. Sometimes, nanomaterials induce side effects like undesired immunosuppression and toxicities, which are major concerns at present in designing optimal nanotherapeutics. This chapter summarizes different types of nanomaterials and their effect on immune responses.


Sign in / Sign up

Export Citation Format

Share Document