scholarly journals Chloroplast protein homeostasis is coupled with retrograde signaling

2019 ◽  
Vol 14 (11) ◽  
pp. 1656037 ◽  
Author(s):  
Vivek Dogra ◽  
Chanhong Kim
2019 ◽  
Author(s):  
Luca Tadini ◽  
Carlotta Peracchio ◽  
Andrea Trotta ◽  
Monica Colombo ◽  
Ilaria Mancini ◽  
...  

AbstractCorrect chloroplast development and function require coordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast’s needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide-repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signaling pathways. Here we show that, following perturbation of chloroplast protein homeostasis i) by growth in lincomycin-containing medium, or ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsp70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.


2019 ◽  
Vol 101 (5) ◽  
pp. 1198-1220 ◽  
Author(s):  
Luca Tadini ◽  
Carlotta Peracchio ◽  
Andrea Trotta ◽  
Monica Colombo ◽  
Ilaria Mancini ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Monica Colombo ◽  
Luca Tadini ◽  
Carlotta Peracchio ◽  
Roberto Ferrari ◽  
Paolo Pesaresi

2019 ◽  
Vol 99 (3) ◽  
pp. 521-535 ◽  
Author(s):  
Giada Marino ◽  
Belen Naranjo ◽  
Jing Wang ◽  
Jan‐Ferdinand Penzler ◽  
Tatjana Kleine ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12106
Author(s):  
Shengji Luo ◽  
Chanhong Kim

Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.


Sign in / Sign up

Export Citation Format

Share Document