scholarly journals Pipeline failure prediction in water distribution networks using evolutionary polynomial regression combined with K-means clustering

2016 ◽  
Vol 14 (7) ◽  
pp. 737-742 ◽  
Author(s):  
Konstantinos Kakoudakis ◽  
Kourosh Behzadian ◽  
Raziyeh Farmani ◽  
David Butler
2010 ◽  
Vol 13 (3) ◽  
pp. 401-418 ◽  
Author(s):  
O. Giustolisi ◽  
L. Berardi ◽  
T. M. Walski

The Colebrook–White formulation of the friction factor is implicit and requires some iterations to be solved given a correct initial search value and a target accuracy. Some new explicit formulations to efficiently calculate the Colebrook–White friction factor are presented herein. The aim of this investigation is twofold: (i) to preserve the accuracy of estimates while (ii) reducing the computational burden (i.e. speed). On the one hand, the computational effectiveness is important when the intensive calculation of the friction factor (e.g. large-size water distribution networks (WDN) in optimization problems, flooding software, etc.) is required together with its derivative. On the other hand, the accuracy of the developing formula should be realistically chosen considering the remaining uncertainties surrounding the model where the friction factor is used. In the following, three strategies for friction factor mapping are proposed which were achieved by using the Evolutionary Polynomial Regression (EPR). The result is the encapsulation of some pieces of the friction factor implicit formulae within pseudo-polynomial structures.


2018 ◽  
Vol 20 (5) ◽  
pp. 1191-1200 ◽  
Author(s):  
Konstantinos Kakoudakis ◽  
Raziyeh Farmani ◽  
David Butler

Abstract This paper examines the impact of weather conditions on pipe failure in water distribution networks using artificial neural network (ANN) and evolutionary polynomial regression (EPR). A number of weather-related factors over 4 consecutive days are the input of the binary ANN model while the output is the occurrence or not of at least a failure during the following 2 days. The model is able to correctly distinguish the majority (87%) of the days with failure(s). The EPR is employed to predict the annual number of failures. Initially, the network is divided into six clusters based on pipe diameter and age. The last year of the monitoring period is used for testing while the remaining years since the beginning are retained for model development. An EPR model is developed for each cluster based on the relevant training data. The results indicate a strong relationship between the annual number of failures and frequency and intensity of low temperatures. The outputs from the EPR models are used to calculate the failures of the homogenous groups within each cluster proportionally to their length.


2015 ◽  
Vol 18 (3) ◽  
pp. 409-427 ◽  
Author(s):  
Daniele Laucelli ◽  
Michele Romano ◽  
Dragan Savić ◽  
Orazio Giustolisi

Sustainable management of water distribution networks (WDNs) requires effective exploitation of available data from pressure/flow devices. Water companies collect a large amount of such data, which need to be managed correctly and analysed effectively using appropriate techniques. Furthermore, water companies need to balance the data gathering and handling costs with the benefits of extracting useful information. Recent approaches implementing data mining techniques for analysing pressure/flow data appear very promising, because they can automate mundane tasks involved in data analysis process and efficiently deal with sensor data collected. Furthermore, they rely on empirical observations of a WDN behaviour over time, allowing reproducing/predicting possible future behaviour of the network. This paper investigates the effectiveness of the evolutionary polynomial regression (EPR) paradigm to reproduce the behaviour of a WDN using on-line data recorded by low-cost pressure/flow devices. Using data from a real district metered area, the case study presented shows that by using the EPR paradigm a model can be built which enables the accurate reproduction and prediction of the WDN behaviour over time and detection of flow anomalies due to possible unreported bursts or unknown increase of water withdrawal. Such an EPR model might be integrated into an early warning system to raise alarms when anomalies are detected.


2020 ◽  
Vol 53 (2) ◽  
pp. 16697-16702
Author(s):  
I. Santos-Ruiz ◽  
J. Blesa ◽  
V. Puig ◽  
F.R. López-Estrada

Sign in / Sign up

Export Citation Format

Share Document