water withdrawal
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 134)

H-INDEX

33
(FIVE YEARS 5)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 233
Author(s):  
Elia M. Tapia-Villaseñor ◽  
Eylon Shamir ◽  
Mary-Belle Cruz-Ayala ◽  
Sharon B. Megdal

The impact of climate uncertainties is already evident in the border communities of the United States and Mexico. This semi-arid to arid border region has faced increased vulnerability to water scarcity, propelled by droughts, warming atmosphere, population growth, ecosystem sensitivity, and institutional asymmetries between the two countries. In this study, we assessed the annual water withdrawal, which is essential for maintaining long-term sustainable conditions in the Santa Cruz River Aquifer in Mexico, which is part of the U.S.–Mexico Transboundary Santa Cruz Aquifer. For this assessment, we developed a water balance model that accounts for the water fluxes into and out of the aquifer’s basin. A central component of this model is a hydrologic model that uses precipitation and evapotranspiration demand as input to simulate the streamflow into and out of the basin, natural recharge, soil moisture, and actual evapotranspiration. Based on the precipitation record for the period 1954–2020, we found that the amount of groundwater withdrawal that maintains sustainable conditions is 23.3 MCM/year. However, the record is clearly divided into two periods: a wet period, 1965–1993, in which the cumulative surplus in the basin reached ~380 MCM by 1993, and a dry period, 1994–2020, in which the cumulative surplus had been completely depleted. Looking at a balanced annual groundwater withdrawal for a moving average of 20-year intervals, we found the sustainable groundwater withdrawal to decline from a maximum of 36.4 MCM/year in 1993 to less than 8 MCM/year in 2020. This study underscores the urgency for adjusted water resources management that considers the large inter-annual climate variability in the region.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 154
Author(s):  
Claudia Ochoa-Noriega ◽  
Juan F. Velasco-Muñoz ◽  
José A. Aznar-Sánchez ◽  
Belén López-Felices

Mexico, as many countries, relies on its aquifers to provide at least 60% of all irrigation water to produce crops every year. Often, the water withdrawal goes beyond what the aquifer can be replenished by the little rainfall. Mexico is a country that has experienced a successful process of regional development based on the adoption of intensive agricultural systems. However, this development has occurred in an unplanned way and displays shortcomings in terms of sustainability, particularly in the management of water resources. This study analysed the case of Costa de Hermosillo, which is one of the Mexican regions in which this model of intensive agriculture has been developed and where there is a high level of overexploitation of its groundwater resources. Based on the application of a qualitative methodology involving different stakeholders (farmers, policymakers, and researchers), the main barriers and facilitators for achieving sustainability in water resources management have been identified. A series of consensus-based measures were contemplated, which may lead to the adoption of sustainable practices in water management. Useful lessons can be drawn from this analysis and be applied to other agricultural areas where ground and surface water resources are overexploited, alternative water sources are overlooked, and where stakeholders have conflicting interests in water management.


2022 ◽  
Vol 194 (2) ◽  
Author(s):  
Zia Ahmed ◽  
Rafiul Alam ◽  
Mufti Nadimul Quamar Ahmed ◽  
Shrinidhi Ambinakudige ◽  
Mansour Almazroui ◽  
...  

2022 ◽  
Vol 7 ◽  
pp. 4
Author(s):  
Naser Waheeb Alnaser ◽  
Hanan Mubarak Albuflasa ◽  
Waheeb Essa Alnaser

The Gulf Cooperation Council Countries (GCCC) are largely engaged in renewable energy compared to other sources of energy for achieving sustainable development, i.e., maintaining balance between environmental, socio-economic and energy security and governance; this include mitigating climate change, reducing air pollution, improving energy access and enhancing energy security. According to IRENA report, by 2030, the GCCC could save 354 million barrels of oil equivalent (a 23% reduction), create more than 220,500 jobs, reduce the power sector's carbon dioxide emissions by 22%, and cut water withdrawal in the power sector by 17% based on the renewables targets already in place. The GCCC have been undertaking renewable energy projects for more than 30 years but recently a trend for increasingly ambitious projects is being witnessed. These are being supported by renewable energy targets, innovative research and development, and investments across the entire industry value chain. The renewable energy targets in GCCC are as follows: Bahrain; 5% by 2025 (250 MW) and 10% by 2035, UAE; 30% by 2030 (5000 MW), KSA; 30% by 2040 (5400 MW), Oman 10 by 2020 (600 MW), Kuwait; 15% by 2030 (11,000 MW) and Qatar; 20% by 2030 (1800 MW). The paper highlight on the vast investment and applications carried in GCCC which can be considered as a transition phase in solar and wind energy use in these countries. It also suggests advantageous investments in sustainability in GCCC like investing in Electric Vehicle, Building Integrated PV or Building Integrated Wind Turbine, Rooftop PV for small −scale installation, and Solar and Wind Water Desalination.


2021 ◽  
pp. 46-56
Author(s):  
V. I. Kozirev ◽  
V. A. Beshentsev

The article discusses the methods used in the field experimental filtration work, which allow you to gain knowledge about the filtration properties and water abundance of rocks. The features of the experimental filtration work in the subsoil areas operated by single water intakes are shown. It is noted that these are small water bodies, both in terms of the number of water wells and the amount of actual water withdrawal. The article proposes to use short-term single pumpings as a field research method in the above-mentioned areas, according to the results of which it is possible to substantiate the amount of required water withdrawal and determine the calculated values of the water conductivity coefficient. As an example, the results of pumping are considered, obtained during the implementation of experimental filtration work at three single water intakes located within the Latitude Ob region. The results of the experimental filtration work served as the source material for calculating the reserves of fresh groundwater. Fresh groundwater reserves were calculated and approved for each site in the amount of 499 m3/day for category B.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3577
Author(s):  
Tatyana Lyubimova ◽  
Anatoly Lepikhin ◽  
Yanina Parshakova ◽  
Andrey Bogomolov ◽  
Yury Lyakhin

The creation of reservoirs in water streams leads to significant changes in the hydrological regime of water bodies: it allows smoothing the peaks of maximum water discharge during a flood period and regulating low-water flow. The creation of reservoirs with significant storage capacity makes it possible to solve a wide range of water-management problems, including the use of falling water energy for hydropower purposes, and maintenance of the uninterrupted water supply and navigation. Since constructed dams are usually operated by hydropower companies, the regulatory regime for the discharge of water into the lower pool is often determined by the daily electricity consumption regime. Intra-day variations in the volume of water discharges through hydroelectric power stations generate multidirectional streams in the upper pool, which can affect the operation of other water withdrawal systems. This paper considers the effect of intraday variations in water discharges into the lower pool on the dynamic and physical properties of the water mass in the region of the location of drinking water-intake heads of Perm city and the quality of the withdrawn water.


2021 ◽  
Vol 38 ◽  
pp. 100961
Author(s):  
Meron Teferi Taye ◽  
Alemseged Tamiru Haile ◽  
Addisalem Genet Fekadu ◽  
Prossie Nakawuka

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Irmak Durur-Subasi ◽  
Duygu Kose ◽  
Muhammed Yayla ◽  
Busra Sirin ◽  
Adem Karaman ◽  
...  

Abstract Background We investigated whether levosimendan prevents contrast medium nephrotoxicity with glycerol aggravation in rats. Methods Forty-eight Wistar albino rats were assigned to eight groups (n = 6 × 8). No medication was administered to group I (controls); glycerol (intramuscular injection of 25% glycerol, 10 mL/kg) group II; intravenous iohexol 10 mL/kg to group III; glycerol and iohexol to group IV; iohexol and intraperitoneal levosimendan 0.25 mg/kg to group V; glycerol, iohexol, and levosimendan 0.25 mg/kg to group VI; iohexol and levosimendan 0.5 mg/kg to group VII; and glycerol, iohexol, and levosimendan 0.5 mg/kg to group VIII. One-day water withdrawal and glycerol injection prompted renal damage; iohexol encouraged nephrotoxicity; levosimendan was administered 30 min after glycerol injection and continued on days 2, 3, and 4. The experiment was completed on day 5. Serum blood urea nitrogen (BUN) and creatinine levels, superoxide dismutase (SOD) activity, glutathione (GSH), malondialdehyde (MDA) levels, tumour necrosis factor-α (TNF-α), nuclear factor kappa ß (NFK-ß), interleukin 6 (IL-6), and histopathological marks were assessed. One-way analysis of variance and Duncan’s multiple comparison tests were used. Results Levosimendan changed serum BUN (p = 0.012) and creatinine (p = 0.018), SOD (p = 0.026), GSH (p = 0.012), and MDA (p = 0.011). Levosimendan significantly downregulated TNF-α (p = 0.022), NFK-ß (p = 0.008), and IL-6 (p = 0.033). Histopathological marks of hyaline and haemorrhagic cast were improved in levosimendan-injected groups. Conclusion Levosimendan showed nephroprotective properties due to its vasodilator, oxidative distress decreasing and inflammatory cytokine preventing belongings.


Author(s):  
Elvis da S. Alves ◽  
Lineu N. Rodrigues ◽  
Rubens A. de Oliveira ◽  
Douglas R. Lorena

ABSTRACT The increase in disputes over water use in the Brazilian Cerrado has demanded improvements in irrigation management and increase in water use productivity. In this context, deficit irrigation is an interesting management strategy, as it enables water savings without significant losses of yield. The present study aimed to evaluate the phenology and yield of a soybean cultivar subjected to different soil moisture contents. The experimental design used was randomized blocks with five treatments and four replicates. In each treatment, an irrigation strategy was applied based on the available water in the soil (AW). The T1 treatment was performed by applying from 80 to 100% AW; in T2 treatment, the allowed variation was from 60 to 80% AW; in T3 treatment, it was from 40 to 60% AW; in T4, from 20 to 40% AW; and in T5, from 0 to 20% AW. It was verified that, in winter and summer, even without the need to reduce water withdrawal, it is recommended to apply from 60 to 80% of the available water in the soil for soybean crop, without decreasing yield. In situations of water restriction, it is possible to have yield of around 55 and 70% in winter and summer, respectively, for the condition from 20 to 40% of the available water in the soil.


Sign in / Sign up

Export Citation Format

Share Document