scholarly journals Linear Stability of Triangular Equilibrium Points in the Generalized Photogravitational Restricted Three Body Problem with Poynting_Robertson Drag

2006 ◽  
Vol 4 (1) ◽  
pp. 79-86 ◽  
Author(s):  
B. Ishwar ◽  
B.S. Kushvah
2017 ◽  
Vol 12 ◽  
pp. 1-21
Author(s):  
Jagadish Singh ◽  
Ayas Mungu Simeon

This paper explores the motion of an infinitesimal body around the triangular equilibrium points in the framework of circular restricted three-body problem (CR3BP) with the postulation that the primaries are triaxial rigid bodies, radiating in nature and are also under the influence of Poynting–Robertson (P-R) drag. We study the linear stability of these triangular points and for the numerical application, the binary stars Kruger 60 (AB) and Archird have been considered. These triangular points are not only perceived to move towards the line joining the primaries in the direction of the bigger primary with increasing triaxiality, they are also unstable owing to the destabilizing influence of P-R drag.


2019 ◽  
Vol 488 (2) ◽  
pp. 1894-1907
Author(s):  
Saleem Yousuf ◽  
Ram Kishor

ABSTRACT The important aspects of a dynamical system are its stability and the factors that affect its stability. In this paper, we present an analysis of the effects of the albedo and the disc on the zero velocity curves, the existence of equilibrium points and their linear stability in a generalized restricted three-body problem (RTBP). The proposed problem consists of the motion of an infinitesimal mass under the gravitational field of a radiating-oblate primary, an oblate secondary and a disc that is rotating about the common centre of mass of the system. Significant effects of the albedo and the disc are observed on the zero velocity curves, on the positions of equilibrium points and on the stability region. A linear stability analysis of collinear equilibrium points L1, 2, 3 is performed with respect to the mass parameter μ and albedo parameter QA of the secondary, separately. It is found that L1, 2, 3 are unstable in both cases. However, the non-collinear equilibrium points L4, 5 are stable in a finite range of mass ratio μ. After analysing the individual as well as combined effects of the radiation pressure force of the primary, the albedo force of the secondary, the oblateness of both the primary and secondary and the disc, it is found that these perturbations play a significant role in the design of the trajectories in the vicinity of equilibrium points and in the analysis of their stability property. In the future, the results obtained will improve existing results and will help in the analysis of different space missions. These results are limited to the regular symmetric disc and radiation pressure, which can be extended later.


2019 ◽  
Vol 28 (1) ◽  
pp. 145-153
Author(s):  
Walid Ali Rahoma ◽  
Akram Masoud ◽  
Fawzy Ahmed Abd El-Salam ◽  
Elamira Hend Khattab

Abstract This paper aims to study the effect of the triaxiality and the oblateness as a special case of primaries on the locations and stability of the collinear equilibrium points of the elliptic restricted three body problem (in brief ERTBP). The locations of the perturbed collinear equilibrium points are first determined in terms of mass ratio of the problem (the smallest mass divided by the total mass of the system) and different concerned perturbing factors. The difference between the locations of collinear points in the classical case of circular restricted three body problem and those in the perturbed case is represented versus mass ratio over its range. The linear stability of the collinear points is discussed. It is observed that the stability regions for our model depend mainly on the eccentricity of the orbits in addition to the considered perturbations.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Jagadish Singh ◽  
Abubakar Umar Sandah

This paper investigates the positions and linear stability of an infinitesimal body around the equilibrium points in the framework of the Robe’s circular restricted three-body problem, with assumptions that the hydrostatic equilibrium figure of the first primary is an oblate spheroid and the second primary is an oblate body as well. It is found that equilibrium point exists near the centre of the first primary. Further, there can be one more equilibrium point on the line joining the centers of both primaries. Points on the circle within the first primary are also equilibrium points under certain conditions and the existence of two out-of-plane points is also observed. The linear stability of this configuration is examined and it is found that points near the center of the first primary are conditionally stable, while the circular and out of plane equilibrium points are unstable.


2016 ◽  
Vol 4 (2) ◽  
pp. 82
Author(s):  
T. Usha ◽  
A. Narayan

The present paper studies the linear stability of the triangular equilibrium points of the system. The system comprises of a radiating primary and a triaxial secondary in elliptic restricted three body problem. The existence of third order resonances has been shown and the linear stability has been analyzed for these resonance cases. For the resonance case,  and   , the conditions of the linear stability are satisfied and the system is stable. But, for the resonance cases and  the system is unstable.


Sign in / Sign up

Export Citation Format

Share Document