Open Astronomy
Latest Publications


TOTAL DOCUMENTS

1133
(FIVE YEARS 70)

H-INDEX

8
(FIVE YEARS 2)

Published By Walter De Gruyter Gmbh

2543-6376

2021 ◽  
Vol 30 (1) ◽  
pp. 132-143
Author(s):  
Elizaveta B. Ryspaeva ◽  
Alexander F. Kholtygin

Abstract We analyze the archival XMM-Newton X-ray observations of 15 γ Cas analogue stars and two candidates for such objects. The EPIC spectra of the considered stars in the range of 0.2-8 keV were extracted and fitted by different models. Our estimates show that assuming the X-ray emission from γ Cas analogues to be totally thermal, their model plasma temperatures can reach anomalously high values. However including an additional power components to the model spectra leads to significant decreasing of the plasma temperatures. The spectral index of the power component is about 1.5, and the fraction of this in the total model flux is rather large (50-90%). Moreover, it decreases with expanding temperature of the X-ray emitting plasma as compared to typical OB stars. We conclude that γ Cas analogues can produce nonthermal X-ray emission within the framework of the Chen & White (1991) model, while if the nonthermal X-rays from typical OB stars exists, they should be generated by different processes.


2021 ◽  
Vol 30 (1) ◽  
pp. 45-55
Author(s):  
Péter Futó ◽  
József Vanyó ◽  
Irakli Simonia ◽  
János Sztakovics ◽  
Mihály Nagy ◽  
...  

Abstract Kaba meteorite as a reference material (one of a least metamorphosed and most primitive carbonaceous chondrites fell on Earth) was chosen for this study providing an adequate background for study of the protoplanetary disk or even the crystallization processes of the Early Solar System. Its olivine minerals (forsterite and fayalite) and their Mg/Fe ratio can help us to understand more about the planet formation mechanism and whether or not the metallic constitutes of the disk could be precursors for the type of planets in the Solar System. A multiple methodological approach such as a combination of the scanning electron microscope, optical microscope, Raman spectroscopy and electron microprobe of the olivine grains give the Fe/Mg ratio database. The analyses above confirmed that planet formation in the protoplanetary disk is driven by the mineralogical precursors of the crystallization process. On the other hand, four nebulae mentioned in this study provide the astronomical data confirming that the planet formation in the protoplanetary disk is dominated or even driven by the metallic constituents.


2021 ◽  
Vol 30 (1) ◽  
pp. 103-109
Author(s):  
Natan A. Eismont ◽  
Vladislav A. Zubko ◽  
Andrey A. Belyaev ◽  
Ludmila V. Zasova ◽  
Dmitriy A. Gorinov ◽  
...  

Abstract This study discusses the usage of Venus gravity assist in order to choose and reaching any point on Venusian surface. The launch of a spacecraft to Venus during the launch windows of 2029 to 2031 is considered for this purpose. The constraints for the method are the re-entry angle and the maximum possible overload. The primary basis of the proposed strategy is to use the gravitational field of Venus to transfer the spacecraft to an orbit resonant to the Venusian one – with the aim of expanding accessible landing areas. Results of the current research show that this strategy provides an essential increase in accessible landing areas and, moreover, may provide an access to any point on the surface of Venus with a small increase in ∆V required for launch from the Earth and in the flight duration. The comparison with the landing without using gravity assist near planet is also given.


2021 ◽  
Vol 30 (1) ◽  
pp. 159-167
Author(s):  
Chunsheng Jiang

Abstract A new method of orbit determination (OD) is proposed: distribution regression. The paper focuses on the process of using sparse observation data to determine the orbit of the spacecraft without any prior information. The standard regression process is to learn a map from real numbers to real numbers, but the approach put forward in this paper is to map from probability distributions to real-valued responses. According to the new algorithm, the number of orbital elements can be predicted by embedding the probability distribution into the reproducing kernel Hilbert space. While making full use of the edge of big data, it also avoids the problem that the algorithm cannot converge due to improper initial values in precise OD. The simulation experiment proves the effectiveness, robustness, and rapidity of the algorithm in the presence of noise in the measurement data.


2021 ◽  
Vol 30 (1) ◽  
pp. 144-148
Author(s):  
Farkhod Botirov ◽  
Salakhutdin Nuritdinov

Abstract In this paper, we develop an early idea of one of the authors (Nuritdinov 1992a,b), who was the first to propose the mechanism of instability of the warp perturbation mode on the background of a nonstationary disk. For this aim, we have studied a model of a nonlinearly non-stationary self-gravitating disk with an anisotropic velocity diagram. The model has a composite nature, or rather, it is a superposition of isotropic and anisotropic states of the disk. In the general case, it is obtained a nonstationary analogue of the dispersion equation of this composite model. We have also investigated the behavior of the domed perturbation mode, the instability of which leads to the formation of a classical bulge in the central region of the disk. In addition, we considered the critical diagrams of the dependence of the virial ratio on the rotation rate of the system for various values of the superposition parameter and the corresponding diagrams for the increments of instability.


2021 ◽  
Vol 30 (1) ◽  
pp. 62-72
Author(s):  
Ruifei Cui ◽  
Yu Jiang ◽  
Chao Tian ◽  
Riwei Zhang ◽  
Sihui Hu ◽  
...  

Abstract We consider the problem of building the relationship of high-energy electron flux between Geostationary Earth Orbit (GEO) and Medium Earth Orbit (MEO). A time-series decomposition technique is first applied to the original data, resulting in trend and detrended part for both GEO and MEO data. Then we predict MEO trend with GEO data using three machine learning models: Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Experiment shows that RF gains best performance in all scenarios. Feature extraction analysis demonstrates that the inclusion of lagged features and (possible) ahead features is substantially helpful to the prediction. At last, an application of imputing missing values for MEO data is presented, in which RF model with selected features is used to handle the trend part while a moving block method is for the detrended part.


2021 ◽  
Vol 30 (1) ◽  
pp. 91-95
Author(s):  
Yurij Alekseevich Kupryakov ◽  
Konstantin Veniaminovich Bychkov ◽  
Oksana Mikhailovna Belova ◽  
Alexey Borisovich Gorshkov ◽  
Petr Heinzel ◽  
...  

Abstract We present intensity curves of solar flares obtained in the Hα hydrogen line and CaII H, CaIR 8542Å lines using multichannel spectrographs of Ondřejov Observatory (Czech Republic) for the period 2000–2012. The general behavior of observed intensity curves is practically the same for all flares and is consistent with temporal variations of X-ray emission. However, our results differ significantly from those obtained by other authors for selected flare stars, for example, AD Leo; EV Lac; YZ CMi. We tried to explain the difference in the behavior of Ca II and Hα radiation flux by appearance of a shock wave during a flare and slow heating of the plasma.


2021 ◽  
Vol 30 (1) ◽  
pp. 127-131
Author(s):  
Evgeny A. Mikhailov ◽  
Ruben R. Andreasyan

Abstract A large number of galaxies have large-scale magnetic fields which are usually measured by the Faraday rotation of radio waves. Their origin is usually connected with the dynamo mechanism which is based on differential rotation of the interstellar medium and alpha-effect characterizing the helicity of the small-scale motions. However, it is necessary to have initial magnetic field which cannot be generated by the dynamo. One of the possible mechanisms is connected with the Biermann battery which acts because of different masses of protons and electrons passing from the central object. They produce circular currents which induce the vertical magnetic field. As for this field we can obtain the integral equation which can be solved by simulated annealing method which is widely used in different branches of mathematics


2021 ◽  
Vol 30 (1) ◽  
pp. 168-175
Author(s):  
Aleksandra Avdeeva ◽  
Dana Kovaleva ◽  
Oleg Malkov ◽  
Alexey Nekrasov

Abstract We determine the interstellar extinction in the selected high-latitude areas of the sky based on Gaia EDR3 astrometry and photometry and spectroscopic data from RAVE survey. We approximate the results with the cosecant law in each area thus deriving the parameters of the barometric formula for different lines of sight. The distribution of the parameters over the entire sky is described using spherical harmonics. As a result, we get a mathematical description of the interstellar visual extinction for different lines of sight and distances from the Sun which can be used for estimating interstellar extinction.


Sign in / Sign up

Export Citation Format

Share Document