Motion around the Triangular Equilibrium Points in the Circular Restricted Three-Body Problem under Triaxial Luminous Primaries with Poynting-Robertson Drag

2017 ◽  
Vol 12 ◽  
pp. 1-21
Author(s):  
Jagadish Singh ◽  
Ayas Mungu Simeon

This paper explores the motion of an infinitesimal body around the triangular equilibrium points in the framework of circular restricted three-body problem (CR3BP) with the postulation that the primaries are triaxial rigid bodies, radiating in nature and are also under the influence of Poynting–Robertson (P-R) drag. We study the linear stability of these triangular points and for the numerical application, the binary stars Kruger 60 (AB) and Archird have been considered. These triangular points are not only perceived to move towards the line joining the primaries in the direction of the bigger primary with increasing triaxiality, they are also unstable owing to the destabilizing influence of P-R drag.

2021 ◽  
Vol 57 (2) ◽  
pp. 311-319
Author(s):  
M. Radwan ◽  
Nihad S. Abd El Motelp

The main goal of the present paper is to evaluate the perturbed locations and investigate the linear stability of the triangular points. We studied the problem in the elliptic restricted three body problem frame of work. The problem is generalized in the sense that the two primaries are considered as triaxial bodies. It was found that the locations of these points are affected by the triaxiality coefficients of the primaries and the eccentricity of orbits. Also, the stability regions depend on the involved perturbations. We also studied the periodic orbits in the vicinity of the triangular points.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. Narayan ◽  
Amit Shrivastava

The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jagadish Singh ◽  
Oni Leke

The linear stability of equilibrium points of a test particle of infinitesimal mass in the framework of Robe's circular restricted three-body problem, as in Hallan and Rana, together with effect of variation in masses of the primaries with time according to the combined Meshcherskii law, is investigated. It is seen that, due to a small perturbation in the centrifugal force and an arbitrary constant of a particular integral of the Gylden-Meshcherskii problem, every point on the line joining the centers of the primaries is an equilibrium point provided they lie within the shell. Further, a number of pairs of equilibrium points lying on the -plane and forming triangles with the centers of the shell and the second primary exist, for some values of . The points collinear with the center of the shell are found to be stable under some conditions and the range of stability depends on the small perturbations and , while the triangular points are unstable. Illustrative numerical exploration is given to indicate significant improvement of the problem in Hallan and Rana.


2019 ◽  
Vol 488 (2) ◽  
pp. 1894-1907
Author(s):  
Saleem Yousuf ◽  
Ram Kishor

ABSTRACT The important aspects of a dynamical system are its stability and the factors that affect its stability. In this paper, we present an analysis of the effects of the albedo and the disc on the zero velocity curves, the existence of equilibrium points and their linear stability in a generalized restricted three-body problem (RTBP). The proposed problem consists of the motion of an infinitesimal mass under the gravitational field of a radiating-oblate primary, an oblate secondary and a disc that is rotating about the common centre of mass of the system. Significant effects of the albedo and the disc are observed on the zero velocity curves, on the positions of equilibrium points and on the stability region. A linear stability analysis of collinear equilibrium points L1, 2, 3 is performed with respect to the mass parameter μ and albedo parameter QA of the secondary, separately. It is found that L1, 2, 3 are unstable in both cases. However, the non-collinear equilibrium points L4, 5 are stable in a finite range of mass ratio μ. After analysing the individual as well as combined effects of the radiation pressure force of the primary, the albedo force of the secondary, the oblateness of both the primary and secondary and the disc, it is found that these perturbations play a significant role in the design of the trajectories in the vicinity of equilibrium points and in the analysis of their stability property. In the future, the results obtained will improve existing results and will help in the analysis of different space missions. These results are limited to the regular symmetric disc and radiation pressure, which can be extended later.


2016 ◽  
Vol 10 ◽  
pp. 23-36
Author(s):  
Jagadish Singh ◽  
Blessing Ashagwu ◽  
Aishetu Umar

We investigate in the framework of the elliptic restricted three-body problem (ER3BP), the influence of the zonal harmonics (J2and J4) of the primary and the radiation pressure of the secondary on the positions and stability of the triangular equilibrium points. The triangular points of the problem are affected by the parameters involved in the systems’ dynamics. The positions change with increase in the zonal harmonics, eccentricity and radiation pressure. The triangular points remain stable in the interval 0<μ<μcas shown arbitrarily.


2019 ◽  
Vol 28 (1) ◽  
pp. 145-153
Author(s):  
Walid Ali Rahoma ◽  
Akram Masoud ◽  
Fawzy Ahmed Abd El-Salam ◽  
Elamira Hend Khattab

Abstract This paper aims to study the effect of the triaxiality and the oblateness as a special case of primaries on the locations and stability of the collinear equilibrium points of the elliptic restricted three body problem (in brief ERTBP). The locations of the perturbed collinear equilibrium points are first determined in terms of mass ratio of the problem (the smallest mass divided by the total mass of the system) and different concerned perturbing factors. The difference between the locations of collinear points in the classical case of circular restricted three body problem and those in the perturbed case is represented versus mass ratio over its range. The linear stability of the collinear points is discussed. It is observed that the stability regions for our model depend mainly on the eccentricity of the orbits in addition to the considered perturbations.


Sign in / Sign up

Export Citation Format

Share Document