A numerical study on the nonlinear effects in focused wave modelling and forces on a semi-submerged horizontal cylinder

2016 ◽  
Vol 12 (4) ◽  
pp. 474-485 ◽  
Author(s):  
Ningbo Gao ◽  
Jianmin Yang ◽  
Xinliang Tian ◽  
Xin Li
1996 ◽  
Vol 118 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Mohamed Selmi

This paper is concerned with the solution of the 3-D-Navier-Stokes equations describing the steady motion of a viscous fluid inside a partially filled spinning and coning cylinder. The cylinder contains either a single fluid of volume less than that of the cylinder or a central rod and a single fluid of combined volume (volume of the rod plus volume of the fluid) equal to that of the cylinder. The cylinder rotates about its axis at the spin rate ω and rotates about an axis that passes through its center of mass at the coning rate Ω. In practical applications, as in the analysis and design of liquid-filled projectiles, the parameter ε = τ sin θ, where τ = Ω/ω and θ is the angle between spin axis and coning axis, is small. As a result, linearization of the Navier-Stokes equations with this parameter is possible. Here, the full and linearized Navier-Stokes equations are solved by a spectral collocation method to investigate the nonlinear effects on the moments caused by the motion of the fluid inside the cylinder. In this regard, it has been found that nonlinear effects are negligible for τ ≈ 0.1, which is of practical interest to the design of liquid-filled projectiles, and the solution of the linearized Navier-Stokes equations is adequate for such a case. However, as τ increases, nonlinear effects increase, and become significant as ε surpasses about 0.1. In such a case, the nonlinear problem must be solved. Complete details on how to solve such a problem is presented.


2021 ◽  
Author(s):  
Avik Saha ◽  
Arup Kumar Das

Abstract Pool boiling around a heated cylinder having a diameter larger than the departure diameter of bubbles has been simulated numerically. Thermally uniform heat flux condition has been maintained at the outer surface of the cylinder, submerged at saturated water at atmospheric pressure. Using the Volume of Fluid type framework of liquid phase fraction in the domain, bubble life cycle around the horizontal cylinder has been analyzed to understand different stages of growth, sliding, merging prior to departure. An effort has also been made to characterize the bubble population, emerging from different sites over the cylindrical surface. The influence of cylinder inclination along its axis on these interfacial features has also been discussed using representative numerical simulation. Temperature profiles of the cylinder surface have been portrayed for both horizontal and inclined situations before presenting respective heat transfer coefficients.


2009 ◽  
Vol 16 (1) ◽  
pp. 33-42 ◽  
Author(s):  
V. Maderich ◽  
T. Talipova ◽  
R. Grimshaw ◽  
E. Pelinovsky ◽  
B. H. Choi ◽  
...  

Abstract. In this paper we study the transformation of an internal solitary wave at a bottom step in the framework of two-layer flow, for the case when the interface lies close to the bottom, and so the solitary waves are elevation waves. The outcome is the formation of solitary waves and dispersive wave trains in both the reflected and transmitted fields. We use a two-pronged approach, based on numerical simulations of the fully nonlinear equations using a version of the Princeton Ocean Model on the one hand, and a theoretical and numerical study of the Gardner equation on the other hand. In the numerical experiments, the ratio of the initial wave amplitude to the layer thickness is varied up one-half, and nonlinear effects are then essential. In general, the characteristics of the generated solitary waves obtained in the fully nonlinear simulations are in reasonable agreement with the predictions of our theoretical model, which is based on matching linear shallow-water theory in the vicinity of a step with solutions of the Gardner equation for waves far from the step.


2018 ◽  
Vol 7 (1) ◽  
pp. 115-128 ◽  
Author(s):  
O. Anwar Bég ◽  
A. Subba Rao ◽  
Ch. Amanulla ◽  
N. Nagendra ◽  
M. Suryanarayana Reddy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document