compression waves
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 16 (2) ◽  
pp. 71-80
Author(s):  
V. I. Pinakov

The process of cumulonimbus cloud Cb calvus formation in the middle latitudes of real atmosphere is analyzed in this work. Its transformation from initial lifecycle stage to “maturity” undergoes due to the formation of the waveguide called “aerial acoustic channel” in the troposphere near the level of temperature minimum that is close to 2 km altitude. This “aerial acoustic channel” can be considered as analog of “deep sound channel” that corresponds to the minimal sound speed level. Tropospheric “channel” related to the thermal inversion zone is almost unlimited horizontally. Synchronous generation of two compression waves (ascending one above Cb and descending one inside Cb) is caused by Cb calvus dome ascension. The first one can provoke the aerodynamic draft previously unexplained. The second one results in the growth of its “storm nose” and in the axial and peripheral descending mechanisms in Cb. The penetration of Cb into stratosphere results in the destruction of dynamic balance around Cb top and hence in its unloading in the descending decompression wave. Here the air cools down to the “dew point” in the place of conjugation with parental cloud – due to Snellius law it results in the formation of aerosol “vortex” as condensation front; this “vortex” has calculated value of its generatrix against vertical. Due to D. Snow’s criterion, this vortex forms either “supercell” vortex or tornado vortex.


Inquiry ◽  
2021 ◽  
pp. 1-29
Author(s):  
Calvin K. W. Kwok
Keyword(s):  

2021 ◽  
Author(s):  
Rui Zhao ◽  
Xiao Liu ◽  
Chih-Yung Wen ◽  
Xiaoyong Wang

Abstract A piecewise acoustic metasurface is designed to suppress the first mode while marginally amplifying the Mack second mode in a Mach 4 flat-plate boundary layer (BL) flow. The results of linear stability theory (LST) and the eN method demonstrate the stabilization effect and transition delay performance, respectively. However, the direct numerical simulation (DNS) results indicate that the designed broadband acoustic metasurface actually weakly excites the first mode with a slightly larger fluctuating pressure amplitude at the surface, which is in contrast to the analysis of LST. The discrepancies are found to lie in the ‘roughness’ effect caused by the recirculation zones inside the microslits and the alternating expansion and compression waves induced at the slit edges, which significantly amplifies the first mode. For further clarification of the competitive mechanism between the acoustic stabilization and ‘roughness’ destabilization effects of metasurfaces on the first mode, a carefully designed metasurface is installed at the maximum growth rate region, which excites the first mode on the metasurface but inhibits its development downstream.


Author(s):  
Mohammed Asadullah ◽  
Sher Afghan Khan ◽  
Parvathy Rajendran ◽  
Ervin Sulaeman

The sound barrier for bullet trains remains a challenge due to the piston effect causing compression waves at the entry and exit of the tunnel. The air ahead of the train nose is compressed, and the wave propagates through the tunnel at the speed of sound and exits with the generation of micro pressure waves. It gives rise to a complex wave pattern comprising compression at the train nose & expansion at the train tail leading to the positive pressure around the nose and suction around the tail. This is intended to provide exhaustive input for the proper design of a futuristic tunnel. The cross-sectional shapes of the tunnel, whether square, rectangular, circular, or semi-circular, will experience pressure compression wave generated by high-speed train but will influence the flow pattern and hence the compression wave. This paper presents the pressure load on the walls of long and short tunnels for subsonic compressible and transonic flows. The experimental investigation is carried out only for length parameters to study short and long tunnels. Further, flow visualization is also provided after the formation of the sonic boom. The results of this investigation can be an essential data source for optimum design of high-speed tunnels so as to suppress or break the sound barriers, thus, resulting in a safer high-speed train network.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nadine Francis ◽  
Peter P. Selwanos ◽  
Magdi H. Yacoub ◽  
Kim H. Parker

Background: Wave intensity analysis is useful for analyzing coronary hemodynamics. Much of its clinical application involves the identification of waves indicated by peaks in the wave intensity and relating their presence or absence to different cardiovascular events. However, the analysis of wave intensity peaks can be problematic because of the associated noise in the measurements. This study shows how wave intensity analysis can be enhanced by using a Maximum Entropy Method (MEM).Methods: We introduce a MEM to differentiate between “peaks” and “background” in wave intensity waveforms. We apply the method to the wave intensity waveforms measured in the left anterior descending coronary artery from 10 Hypertrophic Obstructive Cardiomyopathy (HOCM) and 11 Controls with normal cardiac function. We propose a naming convention for the significant waves and compare them across the cohorts.Results: Using a MEM enhances wave intensity analysis by identifying twice as many significant waves as previous studies. The results are robust when MEM is applied to the log transformed wave intensity data and when all of the measured data are used. Comparing waves across cohorts, we suggest that the absence of a forward expansion wave in HOCM can be taken as an indication of HOCM. Our results also indicate that the backward compression waves in HOCM are significantly larger than in Controls; unlike the forward compression waves where the wave energy in Controls is significantly higher than in HOCM. Comparing the smaller secondary waves revealed by MEM, we find some waves that are present in the majority of Controls and absent in almost all HOCM, and other waves that are present in some HOCM patients but entirely absent in Controls. This suggests some diagnostic utility in the clinical measurement of these waves, which can be a positive sign of HOCM or a subgroup with a particular pathology.Conclusion: The MEM enhances wave intensity analysis by identifying many more significant waves. The method is novel and can be applied to wave intensity analysis in all arteries. As an example, we show how it can be useful in the clinical study of hemodynamics in the coronary arteries in HOCM.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2021 ◽  
pp. 1-18
Author(s):  
Peiqi Liu ◽  
Mingyu Feng ◽  
Xinyu Liu ◽  
Haitao Wang ◽  
Dapeng Hu

Abstract An optimized wave rotor refrigerator (WRR) that can convert part of the expansion work into shaft work to improve the refrigeration performance is obtained by optimization method. Bézier curve is used to establish a two-dimensional simplified model, and response surface method and NLPQL optimization algorithm are used to search for the optimal wave rotor structure. The results show that the optimized wave rotor shape is rear back bending. Compared with original rotor, the isentropic expansion efficiency of the optimized rotor is higher under different pressure ratios and relative velocity, and changes more gently under different pressure ratios. Moreover, the expansion power of the optimized rotor is mainly converted into shaft powder, while the pressure energy and thermal energy increase at the hot end is relatively small. The pressure fluctuations on the inlet and outlet sides of the optimized rotor are smoother, and the compression waves that are constantly reflected during the low-temperature exhaust stage have a smaller intensity, which helps to improve the performance of WRR. The optimized rotor can significantly reduce the entropy production in the refrigeration process, especially the entropy production by velocity gradients. When the pressure ratio is 2.0 and relative velocity is 23 m/s, the isentropic expansion efficiency increases from 56.8% of the original rotor to 62.08% of the optimized rotor.


Author(s):  
S.A. Kozyrev ◽  
E.A. Vlasova ◽  
A.V. Sokolov ◽  
E.A. Usachev

The paper justifies the optimal delay time in non-synchronous fan blasting with the most optimal delay time between the holes being 15 ms. Experiments were conducted to assess the breaking conditions and seismic effects of face blasts in the underground conditions of the Rasvumchorrsky mine using the Iskra-T electronic initiating systems with delay times of 10, 15 and 20 ms. With the delay times of 10 and 15 ms there is no clear segregation of the blast stages and interference of compression waves, created by consecutively blasted charges, takes place, while their joint interaction leads to insignificant increase of the seismic effects on the mine workings. According to the results of ore drawing monitoring, the number of boulders with the above delay times did not exceed 10 pieces for the whole blasted volume for each round. With the delay time of 20 ms a clear segregation of the blast stages was obtained with the minimum number of 7 boulders per blast. In order to ensure acceptable rock mass fragmentation quality and reduce the seismic effect of blasting on the mine workings, as well as to preserve the pilot holes drilled, it is advisable to use reverse initiation with non-synchronized fan blasting with the delay time of 20 ms between the holes.


2021 ◽  
Author(s):  
Nicolas Wijsen ◽  
Evangelia Samara ◽  
Àngels Aran ◽  
David Lario ◽  
Jens Pomoell ◽  
...  

<p>Solar wind stream interaction regions (SIRs)  are often characterised by energetic ion enhancements. The mechanisms accelerating these particles as well as the locations where the acceleration occurs, remains debated. Here, we report the findings of a simulation of a SIR-event observed by Parker Solar Probe at 0.56 au and the Solar Terrestrial Relations Observatory-Ahead at 0.96 au in September 2019 when both spacecraft were approximately radially aligned with the Sun. The simulation reproduces the solar wind configuration and the energetic particle enhancements observed by both spacecraft. Our results show that the energetic particles are produced at the compression waves associated with the SIR and that the suprathermal tail of the solar wind is a good candidate to provide the seed population for particle acceleration. The simulation confirms that the acceleration process does not require shock waves and can already commence within Earth's orbit, with an energy dependence on the precise location where particles are accelerated. The three-dimensional configuration  of the solar wind streams strongly modulates the energetic particle distributions, illustrating the necessity of advanced models to understand  these particle events.</p><p>This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870405 (EUHFORIA 2.0).</p><p> </p>


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Peiqi Liu ◽  
Xiang Li ◽  
Xinyu Liu ◽  
Jun Yang ◽  
Mingyu Feng ◽  
...  

Abstract Actual formation and intensity of shock wave generated during gradual opening and closure between each port and passages of wave rotor are studied by means of experiment and computational fluid dynamics simulation. The results show that the intensity of shock wave increases with the distance from high-pressure inlet, and the reason for the variation tendency is the superposition of compression waves. By changing the rotational speed and the expansion ratio, the shock wave intensity can be adjusted, but the position where the intensity reaches maximum stays constant basically and keeps the distance near 300 mm from high-pressure inlet. Comparing with the one-dimensional simplification result, the actual intensity of shock wave is lower. The difference between the fact and simplification increases with the rotational speed and expansion ratio. The internal mechanism has been analyzed from the aspect of intake mass. Then, the maximum shock wave intensity is found approximately linear to the intake mass of each rotor passage in each cycle.


Sign in / Sign up

Export Citation Format

Share Document