Thermally nonlinear generalized coupled thermo-viscoelasticity of disks: a numerical variational approach

Author(s):  
Mohammad Faraji Oskouie ◽  
Reza Ansari ◽  
Hessam Rouhi
Keyword(s):  
Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


Author(s):  
Philipp Junker ◽  
Daniel Balzani

AbstractWe present a novel approach to topology optimization based on thermodynamic extremal principles. This approach comprises three advantages: (1) it is valid for arbitrary hyperelastic material formulations while avoiding artificial procedures that were necessary in our previous approaches for topology optimization based on thermodynamic principles; (2) the important constraints of bounded relative density and total structure volume are fulfilled analytically which simplifies the numerical implementation significantly; (3) it possesses a mathematical structure that allows for a variety of numerical procedures to solve the problem of topology optimization without distinct optimization routines. We present a detailed model derivation including the chosen numerical discretization and show the validity of the approach by simulating two boundary value problems with large deformations.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mushtaq Ahmad Khan ◽  
Asmat Ullah ◽  
Sahib Khan ◽  
Murtaza Ali ◽  
Sheraz Khan ◽  
...  

Author(s):  
J. Freciozzi ◽  
P. Muse ◽  
A. Almansa ◽  
S. Durand ◽  
A. Khazaal ◽  
...  
Keyword(s):  

Acta Numerica ◽  
1993 ◽  
Vol 2 ◽  
pp. 65-109 ◽  
Author(s):  
C. de Boor

This article was supposed to be on ‘multivariate splines». An informal survey, taken recently by asking various people in Approximation Theory what they consider to be a ‘multivariate spline’, resulted in the answer that a multivariate spline is a possibly smooth piecewise polynomial function of several arguments. In particular the potentially very useful thin-plate spline was thought to belong more to the subject of radial basis funtions than in the present article. This is all the more surprising to me since I am convinced that the variational approach to splines will play a much greater role in multivariate spline theory than it did or should have in the univariate theory. Still, as there is more than enough material for a survey of multivariate piecewise polynomials, this article is restricted to this topic, as is indicated by the (changed) title.


Sign in / Sign up

Export Citation Format

Share Document