AmaranthusPlant Nutrients and Soil Nutrient Dynamics with Cassava Peel Compost

2015 ◽  
Vol 22 (2) ◽  
pp. 141-152
Author(s):  
Eyitayo A. Makinde
2004 ◽  
Vol 96 (2) ◽  
pp. 525-530 ◽  
Author(s):  
K. R. Sistani ◽  
G. E. Brink ◽  
A. Adeli ◽  
H. Tewolde ◽  
D. E. Rowe

2007 ◽  
Vol 29 (3) ◽  
pp. 115-134 ◽  
Author(s):  
Gilbert C. Sigua ◽  
Mary J. Williams ◽  
Samuel W. Coleman

Author(s):  
Yunuen Tapia-Torres ◽  
Pamela Chávez Ortiz ◽  
Natali Hernández-Becerra ◽  
Alberto Morón Cruz ◽  
Ofelia Beltrán ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 179 ◽  
Author(s):  
Ágota Horel ◽  
Györgyi Gelybó ◽  
Imre Potyó ◽  
Klára Pokovai ◽  
Zsófia Bakacsi

Research on the use of soil enhancer materials such as biochar from soil chemical perspective still provide differing results; therefore, investigations focusing on soil-biochar-plant interactions are still necessary to constrain our understanding of complex biochar effects. The present study investigated the changes in biological nitrogen fixation rates (BNF) and overall nutrient dynamics (NO3−, NH4+, total N, K2O, and P2O5) during the growth of Capsicum annuum (pepper) in pot experiments amended with biochar made of paper fiber sludge and grain husk. Four treatments were studied with 0, 0.5%, 2.5%, and 5.0% (by weight) added biochar (BC) amount to temperate silt loam soil. Peppers were planted at 2–4 leave stages and grown for the duration of 12.5 weeks. Our results showed that total nitrogen had relatively small changes in all treatments over time compared to the dynamic changes observed in the case of inorganic nutrients. NO3−-N and NH4+-N abundances presented a continuous decrease during the course of the study after an initial increase. The pepper plant facilitated the BNF rates to triple in the control soils, while plants were in the growing phase (weeks 1–6), which further increased an additional 61% by harvesting (week 12). A high amount of biochar addition suppressed potential BNF rates of the investigated soil, indicating its potentially negative effects on soil indigenous microbial communities if added in excess. We also found a plateau in plant biomass production that after reaching an optimal (2.5%) biochar amendment in the soils, and excess biochar addition did not result in significant changes in the soils’ pH to achieve better nutrient (potassium, nitrogen, phosphorous) use or crop growth.


2016 ◽  
Vol 96 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Kirsten D. Hannam ◽  
Gerry H. Neilsen ◽  
Thomas A. Forge ◽  
Denise Neilsen ◽  
Istvan Losso ◽  
...  

There is growing interest among commercial wine grape (Vitis vinifera L.) growers in reducing water and fertilizer consumption, but little information exists on how best to combine conservative irrigation and soil management practices in the vineyard. In a 3-year-old Merlot vineyard in the semi-arid Okanagan Valley, British Columbia, the interactive effects of resource-conserving micro-irrigation (drippers or microsprinkers), nutrient applications (fertigation or compost), and surface mulching (wood and bark chips) on nitrogen (N) and phosphorus (P) dynamics in the wetted zone of surface soils were examined throughout the growing season using ion-exchange resins. Treatment differences in soil carbon and major nutrient pools, temperature, and moisture were also measured. Higher NO3-N was adsorbed by resins buried under drippers than under microsprinklers except in mulched plots, where NO3-N was uniformly low. By enhancing soil carbon availability and moderating soil microclimate, surface mulches may have promoted microbial immobilisation of N. Compost applications increased soil ortho-P levels, especially on mulched plots, suggesting that both P inputs (from compost) and enhanced microbial biomass (from mulch) promoted soil P cycling. Future work will examine the interactive effects of these resource-efficient practices on leaching losses, greenhouse gas emissions, crop productivity, and fruit quality.


2006 ◽  
Vol 86 (4) ◽  
pp. 655-673 ◽  
Author(s):  
N B Comerford ◽  
W P Cropper, Jr. ◽  
Hua Li ◽  
P J Smethurst ◽  
K. C.J. Van Rees ◽  
...  

Models of soil nutrient bioavailability and uptake assist in nutrient management and lead to a better understanding of nutrient dynamics in the soil-plant system. SSAND (Soil Supply and Nutrient Demand) is a steady state, mechanistic nutrient uptake simulation model based on mass flow and diffusive supply of nutrients to roots. It requires user inputs for soil and plant parameters to calculate a nutrient’s concentration at the root surface and the subsequent uptake by a plant root and/or extrametrical mycorrhizal hyphae. It can be considered a sub-model linked to hydrological or plant growth models. SSAND provides a basis for simulating nutrient uptake under different soil-plant scenarios, including multiple soil compartments, net mineralization inputs, changing root growth, changing mycorrhizal hyphae growth, changing soil water content and multiple fertilizer events. It incorporates uptake from roots and mycorrhizal hyphae, including the potential competition between these entities. It should be useful for simulating the effects of climate change on soil nutrient bioavailability. It should also be a useful tool for managers in evaluating fertilizer regime options. Key words: Nutrient bioavailability, nutrient uptake modeling, phosphorus uptake, mycorrhizae, Spodosols, climate change


Soil Science ◽  
2004 ◽  
Vol 169 (5) ◽  
pp. 385-397 ◽  
Author(s):  
Robert R. Blank ◽  
James A. Young

Sign in / Sign up

Export Citation Format

Share Document