Comparative experimental analysis of the effect of convective heat losses on the performance of parabolic dish water heater

2013 ◽  
Vol 6 (3) ◽  
pp. 258-266 ◽  
Author(s):  
Atul A. Sagade
Author(s):  
Muhammad Uzair ◽  
Mubashir Ali Siddiqui ◽  
Usman Allauddin

The effectiveness of the parabolic dish system (PDS) is greatly affected by the heat losses associated with high temperatures. The complexity of flow and temperature patterns in and around the cavity receiver makes it a challenging task to determine the convective heat loss from the cavity. Various studies have been carried out to determine the convection heat losses from isolated cavities of different shapes. In the presence of dish structure, the free stream wind may affect the stability of structure and the heat losses from the PDS. In this study, effect of focal length on the performance of the coupled cavity-dish system was analyzed using numerical simulations. The loading and the convective heat loss from the cavity were examined with three different cavity positions and different operating conditions in the presence of the dish. The results showed that the shallow dish experienced higher local air velocities near the cavity receiver than in the case of the deep dish. It was concluded that the heat loss is a stronger function of tilt angle rather than focal length, and in essence, the heat losses due to variation of this are negligible.


2021 ◽  
Vol 313 ◽  
pp. 11001
Author(s):  
Abhinav Rajan ◽  
K. S. Reddy

The parabolic dish collector is one of the recognized concentrated solar power systems based on point focusing, which provides high-temperature heat, high concentration ratio, and low heat loss. This system consists of a parabolic reflector and a cavity receiver situated in the focus line. In this work, the conical cavity receiver with an aperture diameter of 0.5 m is considered for a 100 m2 parabolic reflector having a focal to diameter ratio of 0.48. Due to the complexity of flow and temperature profile, the estimation of convective heat loss is a difficult task in a cavity receiver. More heat losses are associated with high temperature obtained in the cavity receiver of the parabolic dish collector. Due to diverse wind effect, the convective heat losses ramp up, which significantly influences the thermal performance of the concentrating power system. The present work aims to investigate the heat losses due to convection from the conical cavity receiver. The numerical investigation was performed using ANSYS Fluent 20R1 to calculate the convective heat losses from the conical cavity receiver of varying diameter to height ratio for varying wind speed, receiver orientation in head-on, and back-on wind flow directions. The considered influential parameters are varying from 0.5 to 1.5 for diameter to height ratio (d/h), 0° to 90° for receiver orientation (γ), 0 to 10 m/s for wind speed (V). The heat losses are highest at 60° and 75° receiver orientation for d/h = 0.5 and d/h = 1-1.5, respectively, at high wind speed in head-on condition, whereas in back-on wind condition, 30° receiver orientation has more heat losses among all the d/h values at high wind speed. The heat loss at 90° receiver orientation is low for 4-10 m/s. The trends of heat loss curve at receiver orientations for given wind conditions are similar for velocity more than 2 m/s. The result reveals that the considered influential parameters have a remarkable effect on convective heat losses from the cavity receiver.


Sign in / Sign up

Export Citation Format

Share Document