scholarly journals Numerical study of Flow patterns and performance of a coupled cavity-dish system under different focal lengths

Author(s):  
Muhammad Uzair ◽  
Mubashir Ali Siddiqui ◽  
Usman Allauddin

The effectiveness of the parabolic dish system (PDS) is greatly affected by the heat losses associated with high temperatures. The complexity of flow and temperature patterns in and around the cavity receiver makes it a challenging task to determine the convective heat loss from the cavity. Various studies have been carried out to determine the convection heat losses from isolated cavities of different shapes. In the presence of dish structure, the free stream wind may affect the stability of structure and the heat losses from the PDS. In this study, effect of focal length on the performance of the coupled cavity-dish system was analyzed using numerical simulations. The loading and the convective heat loss from the cavity were examined with three different cavity positions and different operating conditions in the presence of the dish. The results showed that the shallow dish experienced higher local air velocities near the cavity receiver than in the case of the deep dish. It was concluded that the heat loss is a stronger function of tilt angle rather than focal length, and in essence, the heat losses due to variation of this are negligible.

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
James K. Yuan ◽  
Clifford K. Ho ◽  
Joshua M. Christian

Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose of this investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics (CFD) software packages fluent 13.0 and solidworks flow simulation 2011 against experimentally measured heat losses for a heated cubical cavity receiver model (Kraabel, 1983, “An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity,” Proceedings of the ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299–306) and a cylindrical dish receiver model (Taumoefolau et al., 2004, “Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver,” ASME J. Sol. Energy Eng., 126(2), pp. 801–807). Simulated convective heat loss was underpredicted by 45% for the cubical cavity when experimental wall temperatures were implemented as isothermal boundary conditions and 32% when the experimental power was applied as a uniform heat flux from the cavity walls. Agreement between software packages was generally within 10%. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except when the cavity was inclined at angles below 15 deg and above 75 deg, where losses were under- and overpredicted by fluent and solidworks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Kraabel (1983, “An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity,” Proceedings of the ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299–306) and for individual heated flat plates oriented to the cavity geometry (Pitts and Sissom, 1998, Schaum's Outline of Heat Transfer, 2nd ed., McGraw Hill, New York, p. 227) predicted heat losses from the cubical cavity to within experimental uncertainties. Correlations by Clausing (1987, “Natural Convection From Isothermal Cubical Cavities With a Variety of Side-Facing Apertures,” ASME J. Heat Transfer, 109(2), pp. 407–412) and Paitoonsurikarn et al. (2011, “Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications,” ASME J. Sol. Energy Eng. 133(2), p. 021004) were able to do the same for the cylindrical dish receiver. No single correlation was valid for both experimental receivers. The effect of different turbulence and air-property models within fluent were also investigated and compared in this study. However, no model parameter was found to produce a change large enough to account for the deficient convective heat loss simulated for the cubical cavity receiver case.


Author(s):  
James K. Yuan ◽  
Clifford K. Ho ◽  
Joshua M. Christian

Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose of this investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics software packages FLUENT 13.0 and SolidWorks Flow Simulation 2011 against experimentally measured heat losses for a heated cubical cavity model [1] and a cylindrical dish receiver model [2]. Agreement within 10% was found between software packages across most simulations. However, simulated convective heat loss was under predicted by 45% for the cubical cavity when experimental wall temperatures were implemented on cavity walls, and 32% when implementing the experimental heat flux from the cavity walls. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except at inclination angles below 15° and above 75°, where losses were under- and over-predicted by FLUENT and SolidWorks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Siebers and Kraabel [1] and for an assembly of heated flat plates oriented to the cavity geometry [3] predicted heat losses from the cubical cavity within experimental uncertainties, while correlations by Clausing [4] and Paitoonsurikarn et al. [8] were able to do the same for the cylindrical dish receiver. No single correlation was valid for both receiver models. Different turbulence and air-property models within FLUENT were also investigated and compared in this study.


Author(s):  
Jiabin Fang ◽  
Nan Tu ◽  
Jinjia Wei ◽  
Tao Fang ◽  
Xuancheng Du

The effects of tube layout on the heat losses of solar cavity receiver were numerically investigated. Two typical tube layouts were analyzed. For the first tube layout, only the active surfaces of cavity were covered with tubes. For the second tube layout, both the active cavity walls and the passive cavity walls were covered with tubes. Besides, the effects of water–steam circulation mode on the heat losses were further studied for the second tube layout. The absorber tubes on passive surfaces were considered as the boiling section for one water–steam circulation mode and as the preheating section for the other one, respectively. The thermal performance of the cavity receiver with each tube layout was evaluated according to the previous calculation model. The results show that the passive surfaces appear to have much lower heat flux than the active ones. However, the temperature of those surfaces can reach a quite high value of about 520 °C in the first tube layout, which causes a large amount of radiative and convective heat losses. By contrast, the temperature of passive surfaces decreases by about 200–300 °C in the second tube layout, which leads to a 38.2–70.3% drop in convective heat loss and a 67.7–87.7% drop in radiative heat loss of the passive surfaces. The thermal efficiency of the receiver can be raised from 82.9% to 87.7% in the present work.


2021 ◽  
Vol 313 ◽  
pp. 11001
Author(s):  
Abhinav Rajan ◽  
K. S. Reddy

The parabolic dish collector is one of the recognized concentrated solar power systems based on point focusing, which provides high-temperature heat, high concentration ratio, and low heat loss. This system consists of a parabolic reflector and a cavity receiver situated in the focus line. In this work, the conical cavity receiver with an aperture diameter of 0.5 m is considered for a 100 m2 parabolic reflector having a focal to diameter ratio of 0.48. Due to the complexity of flow and temperature profile, the estimation of convective heat loss is a difficult task in a cavity receiver. More heat losses are associated with high temperature obtained in the cavity receiver of the parabolic dish collector. Due to diverse wind effect, the convective heat losses ramp up, which significantly influences the thermal performance of the concentrating power system. The present work aims to investigate the heat losses due to convection from the conical cavity receiver. The numerical investigation was performed using ANSYS Fluent 20R1 to calculate the convective heat losses from the conical cavity receiver of varying diameter to height ratio for varying wind speed, receiver orientation in head-on, and back-on wind flow directions. The considered influential parameters are varying from 0.5 to 1.5 for diameter to height ratio (d/h), 0° to 90° for receiver orientation (γ), 0 to 10 m/s for wind speed (V). The heat losses are highest at 60° and 75° receiver orientation for d/h = 0.5 and d/h = 1-1.5, respectively, at high wind speed in head-on condition, whereas in back-on wind condition, 30° receiver orientation has more heat losses among all the d/h values at high wind speed. The heat loss at 90° receiver orientation is low for 4-10 m/s. The trends of heat loss curve at receiver orientations for given wind conditions are similar for velocity more than 2 m/s. The result reveals that the considered influential parameters have a remarkable effect on convective heat losses from the cavity receiver.


2021 ◽  
pp. 103007
Author(s):  
Qiliang Wang ◽  
Yao Yao ◽  
Mingke Hu ◽  
Jingyu Cao ◽  
Yu Qiu ◽  
...  

Solar Energy ◽  
2018 ◽  
Vol 176 ◽  
pp. 496-505 ◽  
Author(s):  
Muhammad Uzair ◽  
Timothy N. Anderson ◽  
Roy J. Nates

1978 ◽  
Vol 100 (1) ◽  
pp. 7-13 ◽  
Author(s):  
L. A. Kuehn

Convective heat loss is a primary cause of hypothermia in humans undergoing water immersion, particularly for swimmers and divers at relatively shallow depths. Various biophysical models have been advanced to account for body heat loss in water of different temperatures and cold stress, most of which have made use of physiological data obtained with easily applied classical thermometry techniques. Explicit techniques for the determination of body heat loss must involve direct calorimetry or the use of heat flow transducers, techniques which are difficult to apply in realistic simulations of actual cold water exposure. This paper describes these latter two techniques in some detail, concentrating on the accuracy to be attained and the calibration necessitated with each method. Results obtained with each method specific to heat loss determination at surface and both dry and wet hyperbaric exposures are shown, illustrating the types of data that can be attained.


Sign in / Sign up

Export Citation Format

Share Document