Diagnostic test cases for verifying surface heat transfer algorithms and boundary conditions in building energy simulation programs

2012 ◽  
Vol 5 (5) ◽  
pp. 329-346 ◽  
Author(s):  
Paulo Cesar Tabares-Velasco ◽  
Brent Griffith
Author(s):  
Long Phan ◽  
Cheng-Xian Lin ◽  
Mirko Schäfer

In this paper, a building energy simulation code, EnergyPlus, was used to study selected important conditions, i.e. wall boundary conditions and locations, which potentially affect the energy consumption and thermal management of a popular data center model. The data center model having 1120 servers distributed in four rows of rack was investigated under two major climate conditions — hot and humid (Miami, FL), and cool and humid (Chicago, IL), and under five different wall boundary conditions. The data center model was first simulated under a well-mixed single-zone condition as a baseline. Then, a multi-zone approach was proposed to resolve the hot and cold aisles and used to investigate the data center performance. Both monthly and annual overall energy consumption as well as cooling load reports were analyzed and compared among various boundary conditions. In addition, monthly thermal behavior of hot and cold aisle zones within the data center was analyzed. The simulation results show that thermal performance of the data center is significantly affected by locations or climate conditions. The effects of location and wall boundary conditions are particularly appreciable during the summer and winter seasons.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 609
Author(s):  
Yanwen Wu ◽  
Wenna Jian ◽  
Liu Yang ◽  
Tengyue Zhang ◽  
Yan Liu

The transfer of surface heat between a building and the outdoor environment is the energy transfer channel and it is important for the energy efficiency of buildings. Early stage building design is a critical stage and it can directly determine the energy consumption by a building. Therefore, selecting appropriate surface heat transfer coefficients (SHTCs) is a key issue in building energy consumption prediction. In this study, EnergyPlus was employed to investigate the building load in Chinese cities with different SHTCs: (1) constant SHTCs based on national standards; and (2) dynamically changing SHTCs based on the Thermal Analysis Research Program (TARP). Based on investigations of the hourly load, daily cumulative load in a typical day, and annual cumulative load with different SHTCs, corrections for the annual cumulative load were obtained according to the relative deviations between the results produced with the TARP model and traditional SHTCs. The greatest relative deviations were 67.5% and 25.3% for the building shape factor φ = 0.49 and 0.29 in Lhasa. The relative deviations were 13.3% and 12.0% for φ = 0.49 in Xi’an and Beijing, respectively. Corrections were not essential for other conditions because the relative deviations were lower than 5.0%. Considering the current characteristics of engineering calculations and the need to obtain more accurate design results, dynamically changing SHTCs should be applied. These correction factors can obtain more accurate results for the current building energy efficiency system with traditional SHTCs.


Sign in / Sign up

Export Citation Format

Share Document