scholarly journals Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongguo Zhang ◽  
Destiny Ogbu ◽  
Shari Garrett ◽  
Yinglin Xia ◽  
Jun Sun
2019 ◽  
Vol 156 (6) ◽  
pp. S-448 ◽  
Author(s):  
Yong-Guo Zhang ◽  
Rong Lu ◽  
Shari Garrett ◽  
Yinglin Xia ◽  
Jun Sun

2021 ◽  
Author(s):  
Yong-guo Zhang ◽  
Destiny Ogbu ◽  
Shari Garrett ◽  
Yinglin Xia ◽  
Jun Sun

Background: Emerging evidence has demonstrated that microbiota directly affects the enteric neuron system (ENS) and smooth muscle cell functions via metabolic products or endogenous bacterial components. Amyotrophic Lateral Sclerosis is a neuromuscular disease characterized by the progressive death of motor neurons and muscle atrophy. The GI symptoms in patients were largely ignored or underestimated, especially before the diagnosis of ALS. The relationship between enteric neuromuscular system and microbiome in ALS progression is unknown. Methods: We performed longitudinal studies on the ENS and microbiome in the ALS human-SOD1G93A transgenic G93A mice. We treated age-matched wild-type and ALS mice with bacterial product butyrate or antibiotics to investigate microbiome and neuromuscular functions. Intestinal motility, microbiome, an ENS marker GFAP, a smooth muscle marker (SMMHC), and human colonoids have been examined. The distribution of human-G93A-SOD1 (Superoxide Dismutase 1) protein was tested as an indicator of ALS progression. Results: At 2-month-old before ALS onset, G93A mice had significant lower intestinal motility, decreased grip strength, and reduced time in the rotarod. We observed increased GFAP and decreased SMMHC expression. These changes correlated with consistent increased aggregation of mutated SOD1G93A in the colon, small intestine, and spinal cord. Butyrate and antibiotic treatment showed a significantly longer latency to fall in the rotarod test, reduced SOD1G93A aggregation, and enhanced ENS and muscle function. Feces from 2-month-old SOD1G93A mice significantly enhanced SOD1G93A aggregation in human colonoids transfected with a SOD1G93A-GFP plasmid. Longitudinal studies of microbiome data further showed the altered bacterial community related with autoimmunity (e.g., Clostridium sp. ASF502, Lachnospiraceae bacterium A4), inflammation (e.g., Enterohabdus Muris,), and metabolism (e.g., Desulfovibrio fairfieldensis) at 1- and 2- month-old SOD1G93A mice, suggesting the early microbial contribution to the pathological changes. Conclusions: We have demonstrated a novel link between microbiome, hSOD1G93A aggregation, and intestinal mobility. Dysbiosis occurred at the early stage of the ALS mice before observed mutated-SOD1 aggregation, slow intestinal motility, and dysfunction of ENS. Manipulating the microbiome improves the muscle performance of SOD1G93A mice. Our study provides insights into fundamentals of intestinal neuromuscular structure/function and microbiome in ALS.


2020 ◽  
Vol 63 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Panying Rong

Purpose The purpose of this article was to validate a novel acoustic analysis of oral diadochokinesis (DDK) in assessing bulbar motor involvement in amyotrophic lateral sclerosis (ALS). Method An automated acoustic DDK analysis was developed, which filtered out the voice features and extracted the envelope of the acoustic waveform reflecting the temporal pattern of syllable repetitions during an oral DDK task (i.e., repetitions of /tɑ/ at the maximum rate on 1 breath). Cycle-to-cycle temporal variability (cTV) of envelope fluctuations and syllable repetition rate (sylRate) were derived from the envelope and validated against 2 kinematic measures, which are tongue movement jitter (movJitter) and alternating tongue movement rate (AMR) during the DDK task, in 16 individuals with bulbar ALS and 18 healthy controls. After the validation, cTV, sylRate, movJitter, and AMR, along with an established clinical speech measure, that is, speaking rate (SR), were compared in their ability to (a) differentiate individuals with ALS from healthy controls and (b) detect early-stage bulbar declines in ALS. Results cTV and sylRate were significantly correlated with movJitter and AMR, respectively, across individuals with ALS and healthy controls, confirming the validity of the acoustic DDK analysis in extracting the temporal DDK pattern. Among all the acoustic and kinematic DDK measures, cTV showed the highest diagnostic accuracy (i.e., 0.87) with 80% sensitivity and 94% specificity in differentiating individuals with ALS from healthy controls, which outperformed the SR measure. Moreover, cTV showed a large increase during the early disease stage, which preceded the decline of SR. Conclusions This study provided preliminary validation of a novel automated acoustic DDK analysis in extracting a useful measure, namely, cTV, for early detection of bulbar ALS. This analysis overcame a major barrier in the existing acoustic DDK analysis, which is continuous voicing between syllables that interferes with syllable structures. This approach has potential clinical applications as a novel bulbar assessment.


2019 ◽  
Author(s):  
Naile Alankaya ◽  
Zeliha Tülek ◽  
Aylin Özakgül ◽  
Alper Kaya ◽  
Aynur Dik

2019 ◽  
Author(s):  
Naile Alankaya ◽  
Zeliha Tülek ◽  
Aylin Özakgül ◽  
Alper Kaya ◽  
Aynur Dik

Sign in / Sign up

Export Citation Format

Share Document