Time-fractional derivative model for chloride ions sub-diffusion in reinforced concrete

2015 ◽  
Vol 21 (3) ◽  
pp. 319-331 ◽  
Author(s):  
Song Wei ◽  
Wen Chen ◽  
Jianjun Zhang
Ground Water ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 857-870 ◽  
Author(s):  
Rhiannon M. Garrard ◽  
Yong Zhang ◽  
Song Wei ◽  
HongGuang Sun ◽  
Jiazhong Qian

Author(s):  
Wen Chen ◽  
Jianjun Zhang ◽  
Jinyang Zhang

AbstractThis study proposes a new variable-order fractional diffusion equation model to describe the coupled chloride diffusion-binding processes in reinforced concrete, in which the order of fractional derivative term is a variable function instead of a constant in the standard fractional model. The concentration influence coefficient k is introduced to capture the effect of concentration dependency on chloride transport due to the chloride binding behavior. The two parameters in the proposed model can be determined directly by a statistical analysis of measurement data. Four test cases illustrate that the proposed variable-order fractional derivative model agrees significantly better with experimental data than the most commonly used traditional model governed by the classical Fick’s second law, especially when a large concentration coefficient k is involved. That proposed model is also verified by accurately predicting chloride concentration profiles in a period of 200 days.


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 67-78 ◽  
Author(s):  
Pengfei Qu ◽  
Xiaoting Liu ◽  
Dumitru Baleanu

In the real engineering field, the chloride ions behave abnormal diffusion phenomena in concrete caused by different compositions of the concrete which lead to the complex physical and chemical properties. This paper utilizes a fractal derivative model and a fractional derivative model to describe the diffusion phenomena. Furthermore, according to actual experimental data in the field, the fractional and fractal model can simulate the diffusion behavior of chloride ions in concrete. In comparison to the fractional derivative model, the fractal derivative model gives a simpler mathematical expression and lower calculation costs. In addition, the linear regression analysis method is used to establish an effective relationship between the internal composition of concrete and the parameters of fractal model such as fractal order, ?, and diffusion coefficient, D. As a result, the fractal model with the parameters estimated by previous relationship can predict the diffusion behavior of chloride ions.


2020 ◽  
Vol 23 (6) ◽  
pp. 1647-1662
Author(s):  
Ravshan Ashurov ◽  
Sabir Umarov

Abstract The identification of the right order of the equation in applied fractional modeling plays an important role. In this paper we consider an inverse problem for determining the order of time fractional derivative in a subdiffusion equation with an arbitrary second order elliptic differential operator. We prove that the additional information about the solution at a fixed time instant at a monitoring location, as “the observation data”, identifies uniquely the order of the fractional derivative.


2018 ◽  
Vol 29 (3) ◽  
pp. 035701 ◽  
Author(s):  
Hongmei Zhang ◽  
Qing zhe Zhang ◽  
Litao Ruan ◽  
Junbo Duan ◽  
Mingxi Wan ◽  
...  

AIAA Journal ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 547-550 ◽  
Author(s):  
Lloyd B. Eldred ◽  
William P. Baker ◽  
Anthony N. Palazotto

Sign in / Sign up

Export Citation Format

Share Document