The model tests of rainfall infiltration in two-layer unsaturated soil slopes

Author(s):  
L. Z. Wu ◽  
R. Q. Huang ◽  
H. L. Li ◽  
X. Li ◽  
P. Sun
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Guoqing Cai ◽  
Mengzi Li ◽  
Bowen Han ◽  
Kenan Di ◽  
Qianqian Liu ◽  
...  

An ABAQUS UMAT subroutine was used for the secondary development of the established coupled hydromechanical constitutive model of unsaturated soil considering the effect of the microscopic pore structure. Combined with Euler’s backward implicit integration algorithm, a numerical program was established for simulating the proposed model. The developed numerical program was used to simulate the rainfall infiltration process of an actual slope engineering example, and the effects of rainfall intensity and rainfall duration on the pore pressure, fluid velocity, and displacement of the unsaturated soil slope were analyzed. The results show that the developed numerical program can reasonably analyze the changes in the seepage field and displacement field of unsaturated soil slopes under rainfall infiltration.


2020 ◽  
pp. 211-216
Author(s):  
D.Q. Yang ◽  
S.K. Kong ◽  
H. Rahardjo ◽  
E.C. Leong

2015 ◽  
Vol 3 (1) ◽  
pp. 791-836 ◽  
Author(s):  
B.-G. Chae ◽  
J.-H. Lee ◽  
H.-J. Park ◽  
J. Choi

Abstract. Most landslides in Korea are classified as shallow landslides with an average depth of less than 2 m. These shallow landslides are associated with the advance of a wetting front in the unsaturated soil due to rainfall infiltration, which results in an increase in water content and a reduction in the matric suction in the soil. Therefore, this study presents a modified equation of infinite slope stability analysis based on the concept of the saturation depth ratio to analyze the slope stability change associated with the rainfall on a slope. A rainfall infiltration test in unsaturated soil was performed using a column to develop an understanding of the effect of the saturation depth ratio following rainfall infiltration. The results indicated that the rainfall infiltration velocity due to the increase in rainfall in the soil layer was faster when the rainfall intensity increased. In addition, the rainfall infiltration velocity tends to decrease with increases in the unit weight of soil. The proposed model was applied to assess its feasibility and to develop a regional landslide susceptibility map using a Geographic Information System (GIS). For that purpose, the spatial databases for input parameters were constructed and landslide locations were obtained. In order to validate the proposed approach, the results of the proposed approach were compared with the landslide inventory using ROC (Receiver Operating Characteristics) graph. In addition, the results of the proposed approach were compared with the previous approach used steady state hydrological model. Consequently, the approach proposed in this study displayed satisfactory performance in classifying landslide susceptibility and showed better performance than the steady state approach.


2016 ◽  
Vol 9 ◽  
pp. 15008
Author(s):  
Wengui Huang ◽  
Eng-Choon Leong ◽  
Harianto Rahardjo

Author(s):  
Suhail A. A. Khattab ◽  
Bayer J. Al-Sulaifanie ◽  
Ayad mohammed mahmmod alarna

Sign in / Sign up

Export Citation Format

Share Document