scholarly journals Investigation of submerged structures’ flexibility on sloshing frequency using a boundary element method and finite element analysis

2019 ◽  
Vol 13 (1) ◽  
pp. 519-528 ◽  
Author(s):  
Mohammad Ghalandari ◽  
Saeed Bornassi ◽  
Shahabbodin Shamshirband ◽  
Amir Mosavi ◽  
Kwok Wing Chau
1982 ◽  
Vol 26 (02) ◽  
pp. 117-124
Author(s):  
Thomas L. Geers

A boundary-element method for treatment of the fluid-structure interaction in slamming analysis is described. The method emphasizes simplicity and efficiency, so that the analyst may devote most of his computational resources to the analysis of the structure. Numerical results for a number of rigid-impactor problems are compared with analytical solutions and experimental data, and procedures for the finite-element analysis of flexible impactors are discussed.


1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Sign in / Sign up

Export Citation Format

Share Document