A novel region-merging approach guided by priority for high resolution image segmentation

2017 ◽  
Vol 8 (8) ◽  
pp. 771-780 ◽  
Author(s):  
Tengfei Su
2014 ◽  
Vol 548-549 ◽  
pp. 1179-1184 ◽  
Author(s):  
Wen Ting Yu ◽  
Jing Ling Wang ◽  
Long Ye

Image segmentation with low computational burden has been highly regarded as important goal for researchers. One of the popular image segmentation methods is normalized cut algorithm. But it is unfavorable for high resolution image segmentation because the amount of segmentation computation is very huge [1]. To solve this problem, we propose a novel approach for high resolution image segmentation based on the Normalized Cuts. The proposed method preprocesses an image by using the normalized cut algorithm to form segmented regions, and then use k-Means clustering on the regions. The experimental results verify that the proposed algorithm behaves an improved performance comparing to the normalized cut algorithm.


2021 ◽  
Author(s):  
Fahim Faisal Niloy ◽  
M. Ashraful Amin ◽  
Amin Ahsan Ali ◽  
AKM Mahbubur Rahman

Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Sign in / Sign up

Export Citation Format

Share Document