Target recognition of synthetic aperture radar images using multi-criteria SRC

2021 ◽  
Vol 12 (8) ◽  
pp. 739-749
Author(s):  
Junhua Wang ◽  
Yongping Zhai
2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaohui Zhao ◽  
Yicheng Jiang ◽  
Tania Stathaki

A strategy is introduced for achieving high accuracy in synthetic aperture radar (SAR) automatic target recognition (ATR) tasks. Initially, a novel pose rectification process and an image normalization process are sequentially introduced to produce images with less variations prior to the feature processing stage. Then, feature sets that have a wealth of texture and edge information are extracted with the utilization of wavelet coefficients, where more effective and compact feature sets are acquired by reducing the redundancy and dimensionality of the extracted feature set. Finally, a group of discrimination trees are learned and combined into a final classifier in the framework of Real-AdaBoost. The proposed method is evaluated with the public release database for moving and stationary target acquisition and recognition (MSTAR). Several comparative studies are conducted to evaluate the effectiveness of the proposed algorithm. Experimental results show the distinctive superiority of the proposed method under both standard operating conditions (SOCs) and extended operating conditions (EOCs). Moreover, our additional tests suggest that good recognition accuracy can be achieved even with limited number of training images as long as these are captured with appropriately incremental sample step in target poses.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jingyu Li ◽  
Cungen Liu

For the problem of reliable decision in synthetic aperture radar (SAR) target recognition, a method based on updated classifiers is proposed. The convolutional neural network (CNN) and support vector machine (SVM) are used as basic classifiers to classify samples with unknown target labels. The two decisions are fused and the reliability of the fused decision is evaluated. The classified test samples with high reliabilities are added to the original training samples to update the classifiers. The updated classifiers have stronger classification abilities and the fused result of the two classifiers can obtain a more reliable decision. The proposed method is tested and verified based on the moving and stationary target acquisition and recognition (MSTAR) dataset. The experimental results verify the effectiveness and robustness of the proposed method.


Author(s):  
Hari Kishan Kondaveeti ◽  
Valli Kumari Vatsavayi

In this chapter, Inverse Synthetic Aperture Radar, a special type of active microwave synthetic aperture radar is introduced and its applications in military surveillance are presented. Then, the basic principles involved in data acquisition and image generation are explained. The issues and challenges involved in processing the ISAR images for autonomous target detection and identification are discussed later. The proposed classification method is explained and its accuracy is evaluated experimentally against the conventional classification method in the rest of the chapter.


2018 ◽  
pp. 2307-2332
Author(s):  
Hari Kishan Kondaveeti ◽  
Valli Kumari Vatsavayi

In this chapter, Inverse Synthetic Aperture Radar, a special type of active microwave synthetic aperture radar is introduced and its applications in military surveillance are presented. Then, the basic principles involved in data acquisition and image generation are explained. The issues and challenges involved in processing the ISAR images for autonomous target detection and identification are discussed later. The proposed classification method is explained and its accuracy is evaluated experimentally against the conventional classification method in the rest of the chapter.


2015 ◽  
Vol 9 (9) ◽  
pp. 1376-1385 ◽  
Author(s):  
Zongyong Cui ◽  
Zongjie Cao ◽  
Jianyu Yang ◽  
Jilan Feng ◽  
Hongliang Ren

Sign in / Sign up

Export Citation Format

Share Document