scholarly journals Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

Smart Science ◽  
2013 ◽  
Vol 1 (2) ◽  
pp. 64-68 ◽  
Author(s):  
Tzer-Ming Jeng ◽  
Sheng-Chung Tzeng ◽  
Hsu-Chieh Chou
2013 ◽  
Vol 16 (5) ◽  
pp. 459-467 ◽  
Author(s):  
Milad Ahmadi ◽  
Ali Habibi ◽  
Peyman Pourafshary ◽  
Shahab Ayatollahi

AAPG Bulletin ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 773-788 ◽  
Author(s):  
Jianzhao Yan ◽  
Xiaorong Luo ◽  
Weimin Wang ◽  
Renaud Toussaint ◽  
Jean Schmittbuhl ◽  
...  

2019 ◽  
Vol 30 (8) ◽  
pp. 4083-4101 ◽  
Author(s):  
Aneela Bibi ◽  
Hang Xu ◽  
Qiang Sun ◽  
Ioan Pop ◽  
Qingkai Zhao

Purpose This study aims to carry out an analysis for flow and heat transfer of a new hybrid nanofluid over a vertical flat surface embedded in a saturated porous medium with anisotropic permeability at high Rayleigh number. Here the hybrid nanofluid is considered as the working fluid, with different kinds of small particles in nanoscale being suspended. Design/methodology/approach The generalized homogenous model is introduced to describe the behaviors of hybrid nanofluid. Within the framework of the boundary layer approximations, the governing equations embodying the conservation equations of total mass, momentum and thermal energy are reduced to a set of fully coupled ordinary differential equations via relevant scaling transformations. A flow stability analysis is performed to examine the behavior of convective heat energy. Accurate solutions are obtained by means of a very efficient homotopy-based package BVPh 2.0. Findings Results show that the linear correlations of physical quantities among the base fluid and its suspended nanoparticles are adequate to give accurate results for simulation of behaviors of hybrid nanofluids. Heat enhancement can be also fulfilled by hybrid nanofluids. A flow stability analysis suggests the heat-related power index m > −1/3 for satisfying the increasing behavior of convective heat energy. Originality/value Free convection of a hybrid nanofluid near a vertical flat surface embedded in a saturated porous medium with anisotropic permeability is investigated for the first time. The simplified hybrid nanofluid model is proposed for describing nanofluid behaviors. The results of this proposed approach agree well with those given by the traditional hybrid nanofluid model and experiment. It is expected that, by using different combinations of various kinds of nanoparticles, the new generation of heat transfer fluids can be fabricated, which possess similar thermal-physical properties as regular nanofluids but with lower cost.


2019 ◽  
Vol 103 ◽  
pp. 286-294 ◽  
Author(s):  
Hongsheng Liu ◽  
Dan Wu ◽  
Maozhao Xie ◽  
Songxiang Wang ◽  
Lin Liu

Sign in / Sign up

Export Citation Format

Share Document