liquid fuel
Recently Published Documents


TOTAL DOCUMENTS

2266
(FIVE YEARS 514)

H-INDEX

63
(FIVE YEARS 12)

Recycling ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Aleksandr Ketov ◽  
Vladimir Korotaev ◽  
Natalia Sliusar ◽  
Vladivir Bosnic ◽  
Marina Krasnovskikh ◽  
...  

The recycling of end-of-life plastics is a problem, since small parts can be returned into circulation. The rest is burned, landfilled or recycled into low-quality heating oil by pyrolysis methods. The disadvantages of this method are the need to dispose the formed by-product, pyrolytic carbon, the poor quality of produced liquid fuel and the low productivity of the method associated with the periodicity of the process. In this work, methods of thermogravimetry and chromatography–mass spectrometry (GC-MS) have been used to study the co-pyrolysis products of low-density polyethylene (LDPE) and oxygen-containing substances at the pressures of 4–8 MPa and temperatures of 520–620 °C. Experiments have highlighted the conditions needed for producing of high-quality liquid fuel. Initial data have been prepared for the design of a continuous pyrolysis reactor to dispose polymer waste for the production of bio-oil which would be available to enter the petrochemical products market.


Fuel Cells ◽  
2022 ◽  
Author(s):  
Raisa C.P. Oliveira ◽  
Maria J. Jeremias ◽  
Maria Margarida Mateus ◽  
Diogo M.F. Santos

2022 ◽  
Vol 12 (1) ◽  
pp. 501
Author(s):  
Kranthi Kumar Maniam ◽  
Raghuram Chetty ◽  
Ravikumar Thimmappa ◽  
Shiladitya Paul

Fuel cells are a key enabling technology for the future economy, thereby providing power to portable, stationary, and transportation applications, which can be considered an important contributor towards reducing the high dependencies on fossil fuels. Electrocatalyst plays a vital role in improving the performance of the low temperature fuel cells. Noble metals (Pt, Pd) supported on carbon have shown promising performance owing to their high catalytic activity for both electroreduction and electrooxidation and have good stability. Catalyst preparation by electrodeposition is considered to be simple in terms of operation and scalability with relatively low cost to obtain high purity metal deposits. This review emphasises the role of electrodeposition as a cost-effective method for synthesising fuel cell catalysts, summarising the progress in the electrodeposited Pt and Pd catalysts for direct liquid fuel cells (DLFCs). Moreover, this review also discusses the technological advances made utilising these catalysts in the past three decades, and the factors that impede the technological advancement of the electrodeposition process are presented. The challenges and the fundamental research strategies needed to achieve the commercial potential of electrodeposition as an economical, efficient methodology for synthesising fuel cells catalysts are outlined with the necessary raw materials considering current and future savings scenario.


Author(s):  
Andrew C. Dyer ◽  
Mohamad A. Nahil ◽  
Paul T. Williams

AbstractBiomass and waste polystyrene plastic (ratio 1:1) were co-pyrolysed followed by catalysis in a two-stage fixed bed reactor system to produce upgraded bio-oils for production of liquid fuel and aromatic chemicals. The catalysts investigated were ZSM-5 impregnated with different metals, Ga, Co, Cu, Fe and Ni to determine their influence on bio-oil upgrading. The results showed that the different added metals had a different impact on the yield and composition of the product oils and gases. Deoxygenation of the bio-oils was mainly via formation of CO2 and CO via decarboxylation and decarbonylation with the Ni–ZSM-5 and Co–ZSM-5 catalysts whereas higher water yield and lower CO2 and CO was obtained with the ZSM-5, Ga–ZSM-5, Cu–ZSM-5 and Fe–ZSM-5 catalysts suggesting hydrodeoxygenation was dominant. Compared to the unmodified ZSM-5, the yield of single-ring aromatic compounds in the product oil was increased for the Co–ZSM-5, Cu–ZSM-5, Fe–ZSM-5 and Ni–ZSM-5 catalysts. However, for the Ga–ZSM-5 catalyst, single-ring aromatic compounds were reduced, but the highest yield of polycyclic aromatic hydrocarbons was produced. A higher biomass to polystyrene ratio (4:1) resulted in a markedly lower oil yield with a consequent increased yield of gas.


Sign in / Sign up

Export Citation Format

Share Document