scholarly journals A new gene order in the mitochondrial genome of the deep-sea diaphanous hatchet fish Sternoptyx diaphana Hermann, 1781 (Stomiiformes: Sternoptychidae)

2020 ◽  
Vol 5 (3) ◽  
pp. 2850-2852
Author(s):  
Nair Vilas Arrondo ◽  
André Gomes-dos-Santos ◽  
Esther Román Marcote ◽  
Montse Pérez ◽  
Elsa Froufe ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying-ying Ye ◽  
Jing Miao ◽  
Ya-hong Guo ◽  
Li Gong ◽  
Li-hua Jiang ◽  
...  

AbstractThe complete mitochondrial genome (mitogenome) of animals can provide useful information for evolutionary and phylogenetic analyses. The mitogenome of the genus Exhippolysmata (i.e., Exhippolysmata ensirostris) was sequenced and annotated for the first time, its phylogenetic relationship with selected members from the infraorder Caridea was investigated. The 16,350 bp mitogenome contains the entire set of 37 common genes. The mitogenome composition was highly A + T biased at 64.43% with positive AT skew (0.009) and negative GC skew (− 0.199). All tRNA genes in the E. ensirostris mitogenome had a typical cloverleaf secondary structure, except for trnS1 (AGN), which appeared to lack the dihydrouridine arm. The gene order in the E. ensirostris mitogenome was rearranged compared with those of ancestral decapod taxa, the gene order of trnL2-cox2 changed to cox2-trnL2. The tandem duplication-random loss model is the most likely mechanism for the observed gene rearrangement of E. ensirostris. The ML and BI phylogenetic analyses place all Caridea species into one group with strong bootstrap support. The family Lysmatidae is most closely related to Alpheidae and Palaemonidae. These results will help to better understand the gene rearrangements and evolutionary position of E. ensirostris and lay a foundation for further phylogenetic studies of Caridea.


Genetics ◽  
1981 ◽  
Vol 99 (3-4) ◽  
pp. 415-428
Author(s):  
Raja E Rosenbluth ◽  
David L Baillie

ABSTRACT The Caenorhabditis elegans mutation e873, which results in a recessive uncoordinated phenotype (formerly named Unc-72) and which had been isolated after 32P t reatment (BRENNER1 974), has now been found to act as a crossover suppressor and to be associated with a translocation between linkage groups (LG's) IIIand V. The translocation has been named, eTl(ZI1; V); eT1acts as a dominant crossover suppressor for both the right half of LGIIIand the left half of LGV,providing a balancer for a total of 39 map units. The uncoordinated e873phenotype has been shown to be a consequence of Eminactive unr- 36111gene. It was possible to demonstrate that, in translocation heterozygotes, eT1chromosomes marked with either sma-3or dpy-11segregate from normal LGIII,while those marked with bli-5, sm-2or unc-42segregate from normal LGV.Since bli-5and sma-2are normally on LGIII,and dpy-11is normally on LGV,it is concluded that: (a) eT1is a reciprocal translocation; (b) there is a breakpoint between sma-3and sma-2in LGIII(the region containing unc- 36)and one between dpy-11and unc-42in LGV;(c) thera is no dominant centromere between sma-2and bli-5on LGIII,since in eT1these genes are not linked to a LGIIIcentromere. Similarly, it is highly unlikely that there is a centromere to the left of dpy-11on LGV.The new gene order in eT1was determined by measuring recombination rates between markers in eT1homozygotes. It is concluded that the new order is: dpy-1 sma-3 (break) dpy-11 unc-60,and bli-5 sma-2 (break) unc-42 unc-51.——Thisis the first analysis of a C. eleganstranslocation with respect to reciprocity, breakpoints and new gene order.


Sign in / Sign up

Export Citation Format

Share Document