THE GENETIC ANALYSIS OF A RECIPROCAL TRANSLOCATION, eT1(III; V), IN CAENORHABDITIS ELEGANS

Genetics ◽  
1981 ◽  
Vol 99 (3-4) ◽  
pp. 415-428
Author(s):  
Raja E Rosenbluth ◽  
David L Baillie

ABSTRACT The Caenorhabditis elegans mutation e873, which results in a recessive uncoordinated phenotype (formerly named Unc-72) and which had been isolated after 32P t reatment (BRENNER1 974), has now been found to act as a crossover suppressor and to be associated with a translocation between linkage groups (LG's) IIIand V. The translocation has been named, eTl(ZI1; V); eT1acts as a dominant crossover suppressor for both the right half of LGIIIand the left half of LGV,providing a balancer for a total of 39 map units. The uncoordinated e873phenotype has been shown to be a consequence of Eminactive unr- 36111gene. It was possible to demonstrate that, in translocation heterozygotes, eT1chromosomes marked with either sma-3or dpy-11segregate from normal LGIII,while those marked with bli-5, sm-2or unc-42segregate from normal LGV.Since bli-5and sma-2are normally on LGIII,and dpy-11is normally on LGV,it is concluded that: (a) eT1is a reciprocal translocation; (b) there is a breakpoint between sma-3and sma-2in LGIII(the region containing unc- 36)and one between dpy-11and unc-42in LGV;(c) thera is no dominant centromere between sma-2and bli-5on LGIII,since in eT1these genes are not linked to a LGIIIcentromere. Similarly, it is highly unlikely that there is a centromere to the left of dpy-11on LGV.The new gene order in eT1was determined by measuring recombination rates between markers in eT1homozygotes. It is concluded that the new order is: dpy-1 sma-3 (break) dpy-11 unc-60,and bli-5 sma-2 (break) unc-42 unc-51.——Thisis the first analysis of a C. eleganstranslocation with respect to reciprocity, breakpoints and new gene order.

Genetics ◽  
1978 ◽  
Vol 88 (1) ◽  
pp. 49-65
Author(s):  
Robert K Herman

ABSTRACT Two dominant suppressors of crossing over have been identified following X-ray treatment of the small nematode C. elegans. They suppress crossing over in linkage group II (LGII) about 100-fold and 50-fold and are both tightly linked to LGII markers. One, called C1, segregates independently of all other linkage groups and is homozygous fertile. The other is a translocation involving LGII and X. The translocation also suppresses rrossing over along the right half of X and is homozygous lethal. CI has been used as a balancer of LGII recessive lethal and sterile mutations induced by EMS. The frequencies of occurrence of lethals and steriles were approximately equal. Fourteen mutations were assigned to complementation groups and mapped. They tended to map in the same region where LGII visibles are clustered.


1971 ◽  
Vol 13 (3) ◽  
pp. 561-577 ◽  
Author(s):  
Satish C. Bhalla

A small reciprocal translocation T(1;2)1 involving chromosomes 1 and 2 and a paracentric inversion In(1)3 on m chromosome (1) of A. aegypti interact to give peculiar but consistent crossover values. The system is termed COSES and is associated with partial sterility. In females it suppresses crossing over tremendously to the right of bz and enhances crossing over to its left. In the males it enhances crossing over to the right of m (only 3 crossover units away from bz) hut the region to its left remains unaffected. COSES also displays interchromosomal effects by enhancing crossing over in linkage group III. Cytological and genetic evidence for the presence of translocation and inversion are presented. All three pairs of chromosomes are correlated to the three linkage groups.


Genetics ◽  
1978 ◽  
Vol 88 (4) ◽  
pp. 689-707 ◽  
Author(s):  
Fred Sherman ◽  
Cynthia Helms

ABSTRACT The CYC7-1 mutation in the yeast Saccharomyces cerevisiae causes the production of approximately 30 times the normal amount of iso-2-cytochrome c. Genetic analysis established that the CYC7-1 mutation is a reciprocal translocation involving the left arm of chromosome V and the right arm of chromosome XVI. The chromosome V arm was broken adjacent to the gene CYC7, which determines the primary structure of iso-2-cytochrome c, and this fragment containing the CYC7 gene was joined to the segment of chromosome XVI. It appears as though the elevation of iso-2-cytochrome c is caused by an abnormal controlling region adjacent to the structural region of the CYC7 gene.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 615-625
Author(s):  
R E Rosenbluth ◽  
R C Johnsen ◽  
D L Baillie

Abstract The effect of deficiencies on recombination was studied in Caenorhabditis elegans. Heterozygous deficiencies in the left half of linkage group V [LGV(left)] were shown to inhibit recombination to their right. Fourteen deficiencies, all to the left of unc-46, were analyzed for their effect on recombination along LGV. The deficiencies fell into two groups: 10 "major inhibitors" which reduce recombination to less than 11% of the expected rate between themselves and unc-46; and four "minor inhibitors" which reduce recombination, but to a much lesser extent. All four minor inhibitors delete the left-most known gene on the chromosome, while six of the ten major inhibitors do not (i.e., these are "internal" deficiencies). Where recombination could be measured on both sides of a deficiency, recombination was inhibited to the right but not to the left. In order to explain these results we have erected a model for the manner in which pairing for recombination takes place. In doing so, we identify a new region of LGV, near the left terminus, that is important for the pairing process.


Genetics ◽  
1986 ◽  
Vol 112 (3) ◽  
pp. 459-468
Author(s):  
Marisa Sebastiano ◽  
Marina D'Alessio ◽  
Paolo Bazzicalupo

ABSTRACT Using a screening procedure that is based on a histochemical stain for the enzyme β-glucuronidase, we have isolated several mutants of the nematode Caenorhabditis elegans affected in β-glucuronidase activity. All of the mutations fall into one complementation group and identify a new gene, gus-1, which has been mapped on the right arm of linkage group I (LG I), 1.1 map units to the left of unc-54. The mutants have no visible phenotype, and their viabilities and fertilities are unaffected. Linked revertants of two of the mutations have been isolated. They restore enzyme activity to almost wild-type levels; the β-glucuronidase that one of the revertants produces differs from that of the wild type. We propose that gus-1 is the structural locus for β-glucuronidase.


2021 ◽  
pp. 1-20
Author(s):  
Benjamin Hegarty

The regulation of public space is generative of new approaches to gender nonconformity. In 1968 in Jakarta, the capital of Indonesia, a group of people who identified as wadam—a new term made by combining parts of Indonesian words denoting “femininity” and “masculinity”—made a claim to the city's governor that they had the right to appear in public space. This article illustrates the paradoxical achievement of obtaining recognition on terms constituted through public nuisance regulations governing access to and movement through space. The origins and diffuse effects of recognition achieved by those who identified as wadam and, a decade later, waria facilitated the partial recognition of a status that was legal but nonconforming. This possibility emerged out of city-level innovations and historical conceptualizations of the body in Indonesia. Attending to the way that gender nonconformity was folded into existing methods of codifying space at the scale of the city reflects a broader anxiety over who can enter public space and on what basis. Considering a concern for struggles to contend with nonconformity on spatial grounds at the level of the city encourages an alternative perspective on the emergence of gender and sexual morality as a definitive feature of national belonging in Indonesia and elsewhere.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 353-364 ◽  
Author(s):  
Jerry A Coyne

Abstract Females of Drosophila melanogaster and its sibling species D. simulans have very different cuticular hydrocarbons, with the former bearing predominantly 7,11-heptacosadiene and the latter 7-tricosene. This difference contributes to reproductive isolation between the species. Genetic analysis shows that this difference maps to only the third chromosome, with the other three chromosomes having no apparent effect. The D. simulans alleles on the left arm of chromosome 3 are largely recessive, allowing us to search for the relevant regions using D. melanogaster deficiencies. At least four nonoverlapping regions of this arm have large effects on the hydrocarbon profile, implying that several genes on this arm are responsible for the species difference. Because the right arm of chromosome 3 also affects the hydrocarbon profile, a minimum of five genes appear to be involved. The large effect of the third chromosome on hydrocarbons has also been reported in the hybridization between D. simulans and its closer relative D. sechellia, implying either an evolutionaly convergence or the retention in D. sechllia of an ancestral sexual dimorphism.


Sign in / Sign up

Export Citation Format

Share Document