scholarly journals Analysis of Cucurbita ficifolia (Cucurbitaceae) chloroplast genome and its phylogenetic implications

2021 ◽  
Vol 6 (10) ◽  
pp. 3033-3035
Author(s):  
Tao Zhang ◽  
Jun-Jun Xie ◽  
Jie Zhang ◽  
Zheng-An Yang ◽  
Xue Li ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


2021 ◽  
Vol 6 (11) ◽  
pp. 3095-3097
Author(s):  
Zhou Cong ◽  
Lijuan Cai ◽  
Yu Zhang ◽  
Wenzhen Su ◽  
Huiying Li ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 374-375
Author(s):  
Cui-Tian Li ◽  
Pu Guo ◽  
Hui-Run Huang ◽  
Nan-Cai Pei ◽  
Miao-Miao Shi ◽  
...  

2017 ◽  
Vol 10 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Luxian Liu ◽  
Chuying Zhang ◽  
Yuewen Wang ◽  
Meifang Dong ◽  
Fude Shang ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yun Song ◽  
Yongjiang Zhang ◽  
Jin Xu ◽  
Weimin Li ◽  
MingFu Li

AbstractThe pantropical plant genus Dalbergia comprises approximately 250 species, most of which have a high economic and ecological value. However, these species are among the most threatened due to illegal logging and the timber trade. To enforce protective legislation and ensure effective conservation of Dalbergia species, the identity of wood being traded must be accurately validated. For the rapid and accurate identification of Dalbergia species and assessment of phylogenetic relationships, it would be highly desirable to develop more effective DNA barcodes for these species. In this study, we sequenced and compared the chloroplast genomes of nine species of Dalbergia. We found that these chloroplast genomes were conserved with respect to genome size, structure, and gene content and showed low sequence divergence. We identified eight mutation hotspots, namely, six intergenic spacer regions (trnL-trnT, atpA-trnG, rps16-accD, petG-psaJ, ndhF-trnL, and ndhG-ndhI) and two coding regions (ycf1a and ycf1b), as candidate DNA barcodes for Dalbergia. Phylogenetic analyses based on whole chloroplast genome data provided the best resolution of Dalbergia, and phylogenetic analysis of the Fabaceae showed that Dalbergia was sister to Arachis. Based on comparison of chloroplast genomes, we identified a set of highly variable markers that can be developed as specific DNA barcodes.


Sign in / Sign up

Export Citation Format

Share Document