scholarly journals Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yun Song ◽  
Yongjiang Zhang ◽  
Jin Xu ◽  
Weimin Li ◽  
MingFu Li

AbstractThe pantropical plant genus Dalbergia comprises approximately 250 species, most of which have a high economic and ecological value. However, these species are among the most threatened due to illegal logging and the timber trade. To enforce protective legislation and ensure effective conservation of Dalbergia species, the identity of wood being traded must be accurately validated. For the rapid and accurate identification of Dalbergia species and assessment of phylogenetic relationships, it would be highly desirable to develop more effective DNA barcodes for these species. In this study, we sequenced and compared the chloroplast genomes of nine species of Dalbergia. We found that these chloroplast genomes were conserved with respect to genome size, structure, and gene content and showed low sequence divergence. We identified eight mutation hotspots, namely, six intergenic spacer regions (trnL-trnT, atpA-trnG, rps16-accD, petG-psaJ, ndhF-trnL, and ndhG-ndhI) and two coding regions (ycf1a and ycf1b), as candidate DNA barcodes for Dalbergia. Phylogenetic analyses based on whole chloroplast genome data provided the best resolution of Dalbergia, and phylogenetic analysis of the Fabaceae showed that Dalbergia was sister to Arachis. Based on comparison of chloroplast genomes, we identified a set of highly variable markers that can be developed as specific DNA barcodes.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiheng Wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. Results The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42–47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


Phytotaxa ◽  
2021 ◽  
Vol 500 (3) ◽  
pp. 241-247
Author(s):  
HUI-FENG WANG ◽  
ZHENG-FENG WANG ◽  
QIAO-MEI QIN ◽  
HONG-LIN CAO ◽  
XIAO-MING GUO

Tigridiopalma longmenensis, a new species from Guangdong, China, is described. This species differs from its ally, T. magnifica, by the polychasium consisting of scorpioid cymes, hypanthium with carinas on angles, and longer stamens with a conspicuously white or pink spur at the connective base of anther. A diagnosis and a distribution map of the two species are also provided. The complete chloroplast genome of T. longmenensis was reported here. Phylogenetic analyses based on complete chloroplast genomes from T. longmenensis and other 15 Melastomataceae species indicated that T. longmenensis is sister to T. magnifica. The discovery of T. longmenensis terminates Tigridiopalma as a monotypic genus.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2165 ◽  
Author(s):  
Xiao Zhang ◽  
Tao Zhou ◽  
Jia Yang ◽  
Jingjing Sun ◽  
Miaomiao Ju ◽  
...  

Cucurbitaceae is the fourth most important economic plant family with creeping herbaceous species mainly distributed in tropical and subtropical regions. Here, we described and compared the complete chloroplast genome sequences of ten representative species from Cucurbitaceae. The lengths of the ten complete chloroplast genomes ranged from 155,293 bp (C. sativus) to 158,844 bp (M. charantia), and they shared the most common genomic features. 618 repeats of three categories and 813 microsatellites were found. Sequence divergence analysis showed that the coding and IR regions were highly conserved. Three protein-coding genes (accD, clpP, and matK) were under selection and their coding proteins often have functions in chloroplast protein synthesis, gene transcription, energy transformation, and plant development. An unconventional translation initiation codon of psbL gene was found and provided evidence for RNA editing. Applying BI and ML methods, phylogenetic analysis strongly supported the position of Gomphogyne, Hemsleya, and Gynostemma as the relatively original lineage in Cucurbitaceae. This study suggested that the complete chloroplast genome sequences were useful for phylogenetic studies. It would also determine potential molecular markers and candidate DNA barcodes for coming studies and enrich the valuable complete chloroplast genome resources of Cucurbitaceae.


2019 ◽  
Vol 20 (11) ◽  
pp. 2726 ◽  
Author(s):  
Inkyu Park ◽  
Jun-Ho Song ◽  
Sungyu Yang ◽  
Wook Jin Kim ◽  
Goya Choi ◽  
...  

The genus Cuscuta (Convolvulaceae) comprises well-known parasitic plants. Cuscuta species are scientifically valuable, as their life style causes extensive crop damage. Furthermore, dried seeds of C. chinensis are used as a Korean traditional herbal medicine. Despite the importance of Cuscuta species, it is difficult to distinguish these plants by the naked eye. Moreover, plastid sequence information available for Cuscuta species is limited. In this study, we distinguished between C. chinensis and C. japonica using morphological characterisation of reproductive organs and molecular characterisation of chloroplast genomes. The differences in morphological characteristics of reproductive organs such as style, stigma, infrastaminal scale, seed shape and testa ornamentation were useful for distinguishing between C. japonica and C. chinensis. Analysis of chloroplast genomes revealed drastic differences in chloroplast genome length and gene order between the two species. Although both species showed numerous gene losses and genomic rearrangements, chloroplast genomes showed highly similar structure within subgenera. Phylogenetic analysis of Cuscuta chloroplast genomes revealed paraphyletic groups within subgenera Monogynella and Grammica, which is consistent with the APG IV system of classification. Our results provide useful information for the taxonomic, phylogenetic and evolutionary analysis of Cuscuta and accurate identification of herbal medicine.


2020 ◽  
Author(s):  
Gurusamy Raman ◽  
KyuTae Park ◽  
Joo Hwan Kim ◽  
SeonJoo Park

Abstract Background: The invasive species Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, no extensive molecular studies of this plant have been conducted. Results: Here, the complete chloroplast (cp) genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 base pairs (bp) in length, with a quadripartite circular structure. The cp genome contained 115 unique genes, including 80 PCGs, 31 tRNA genes, and 4 rRNA genes. Comparative analyses revealed that X. spinosum contains a large number of repeats (999 repeats) and 701 SSRs in its cp genome. Fourteen divergences (Π > 0.03) were found in the intergenic spacer regions. Phylogenetic analyses revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and an early-diverging lineage of subtribe Ambrosiinae, although this finding was supported with a very weak bootstrap value. Conclusion: The identified hotspot regions could be used as molecular markers for resolving phylogenetic relationships and species identification in the genus Xanthium.


2020 ◽  
Author(s):  
Jorge Villacres Vallejo ◽  
José Aranda Ventura ◽  
Anna Wallis ◽  
Robin Cagle ◽  
Sara M. Handy ◽  
...  

Abstract BackgroundSeeds from Bixa orellana, commonly known as “achiote” and “annatto” produce bixin and norbixin apocarotenoids which impart bright red and orange colors that have been used for thousands of years for food, medicine and body painting by indigenous Americans, and by Europeans for ~ 500 years as food coloring, especially for cheeses. Use of Bixa colorants continues to grow as synthetic dyes come under increased scrutiny for toxicity to human and environmental systems. There is a wide range of color variation in pods of Bixa orellana for which genetic loci that delineate phenotypes have not yet been identified. Whole chloroplast genomes and raw genome skims provide a wide variety of genetic markers that can be used for identification purposes as well as phylogenetic inference of broad scale evolutionary relationships. Here we apply whole chloroplast genome sequencing of “red” and “yellow” individuals of Bixa orellana for phylogenetic analyses to explore the position of Bixaceae relative to other families within the Malvales as well as to underpin future work that may delineate diverse color phenotypes.ResultsFully assembled chloroplast genomes were produced for both red and yellow Bixa orellana accessions (158,918 and 158,823 bp respectively). Synteny and gene content was identical to the only other previously reported full chloroplast genome of Bixa orellana (NC_041550). We observed a 17 base pair deletion at position 58399-58415 in both of our accessions, relative to NC_041550 and a 6 base pair deletion at position 75531-75526 in the accession of “red” Bixa. A phylogeny based on alignment free kmer distance metrics was used to confirm monophylly of Bixa accessions, and to place Bixaceae relative to other families within the Malvales.ConclusionsOur data support Bixaceae as sister to Malvaceae and identified several potentially diagnostic insertion-deletion mutations that may with future work, reliably distinguish between red and yellow phenotypes. In addition to utility for phylogenic questions and development of identity markers, we demonstrate that chloroplast genomes can be used in conjunction with modern bioinformatic search tools (kmer based) to provide rapid and precise identification of Bixa orellana for Next Generation Sequencing approaches to natural product authentication.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Hanna Kijak ◽  
Weronika Łodyga ◽  
Ireneusz J. Odrzykoski

<p>The primary purpose of this study is to evaluate the sequence variation for two regions of chloroplast DNA in a collection of 27 taxonomically well-annotated clonal lines of <em>Marchantia polymorpha</em> sensu lato derived from European populations. We attempted to develop molecular markers so as to identify three taxa usually recognized as subspecies. We sequenced two regions: the <em>rps4</em> gene along with the <em>rps4-trnT</em> intergenic spacer and an intron of the tRNA<sup>Gly</sup> (UCC) gene. Samples of <em>Marchantia paleacea</em> ssp. <em>diptera</em> from Japan were used for comparative purposes.</p><p>Three haplotypes (MA, MB, and MC) were identified for the species, and almost all sequence divergence between subspecies was found to occur at the level of 0.0023–0.0032 substitutions per site. The sequence divergence between <em>M. polymorpha</em> and <em>M. paleacea</em> was tenfold greater (0.0331–0.0340). We did not detect any differences between <em>M. paleacea</em> and homologous sequences from the reference chloroplast genome of <em>M. polymorpha</em> obtained from the GeneBank (NC_001319). It was confirmed that the cell suspension line A-18 used for the sequencing of the full chloroplast genome in 1986 was incorrectly taxonomically annotated.</p>


2020 ◽  
Author(s):  
Benwen Liu ◽  
Yu Xin Hu ◽  
Zheng Yu Hu ◽  
Guo Xiang Liu ◽  
Huan Zhu

Abstract Background Order Chaetophorales currently includes six families, namely Schizomeridaceae, Aphanochaetaceae, Barrancaceae, Uronemataceae, Fritschiellaceae, and Chaetophoraceae. Most studies have primarily focused on intergeneric phylogenetic relationships within this order and the phylogenetic relationships with four other Chlorophycean orders (Chaetophorales, Chaetopeltidales and Oedogoniales, and Volvocales). This study aimed to phylogenetically reconstruct order Chaetophorales and determine the taxonomic scheme and to further the current understanding of the evolution of order Chaetophorales. The taxonomic scheme of Chaetophorales has been inferred primarily through phylogenetic analysis based on rDNA sequences and phylogenetic relationships among families in order Chaetophorales remain unclear. Results In present study, seven complete and five fragmentary chloroplast genomes were harvested. Phylogenomic and comparative genomic analysis were performed to determine the taxonomic scheme within Chaetophorales. Consequently, Oedogoniales was found to be a sister to a clade linking Chaetophorales and Chaetopeltidales, Schizomeriaceae, and Aphanochaetaceae clustered into a well-resolved basal clade in Chaetophorales, inconsistent with the results of phylogenetic analysis based on rDNA sequences. Comparative genomic analyses revealed that the chloroplast genomes of Schizomeriaceae and Aphanochaetaceae were highly conserved and homologous, highlighting the closest relationship in this order. Germination types of zoospores precisely correlated with the phylogenetic relationships. Conclusions In conclusion, chloroplast genome structure analyses, synteny analyses, and zoospore germination analyses were concurrent with phylogenetic analyses based on the chloroplast genome, and all of them robustly determined the unique taxonomic scheme of Chaetophorales and the relationships of Oedogoniales, Chaetophorales, and Chaetopeltidales.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6032 ◽  
Author(s):  
Zhenyu Zhao ◽  
Xin Wang ◽  
Yi Yu ◽  
Subo Yuan ◽  
Dan Jiang ◽  
...  

Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification.


Sign in / Sign up

Export Citation Format

Share Document