Spatial Coherence Analysis by Interferometric Methods

1977 ◽  
Vol 24 (11) ◽  
pp. 1099-1104 ◽  
Author(s):  
Mario Carnevale ◽  
Benedetto Daino
2013 ◽  
Vol 38 (21) ◽  
pp. 4350 ◽  
Author(s):  
Flávio Ferreira ◽  
Michael Belsley

2015 ◽  
Vol 34 (6) ◽  
pp. 432-443 ◽  
Author(s):  
Hyuckjong Kwon ◽  
Junghun Kim ◽  
Jee Woong Choi ◽  
Donhyug Kang ◽  
Sungho Cho ◽  
...  

2014 ◽  
Vol 112 (14) ◽  
Author(s):  
J.-T. Gomes ◽  
L. Delage ◽  
R. Baudoin ◽  
L. Grossard ◽  
L. Bouyeron ◽  
...  

2008 ◽  
Vol 100 (15) ◽  
Author(s):  
S. Brustlein ◽  
L. Del Rio ◽  
A. Tonello ◽  
L. Delage ◽  
F. Reynaud ◽  
...  

Author(s):  
E. Völkl ◽  
L.F. Allard ◽  
B. Frost ◽  
T.A. Nolan

Off-axis electron holography has the well known ability to preserve the complex image wave within the final, recorded image. This final image described by I(x,y) = I(r) contains contributions from the image intensity of the elastically scattered electrons IeI (r) = |A(r) exp (iΦ(r)) |, the contributions from the inelastically scattered electrons IineI (r), and the complex image wave Ψ = A(r) exp(iΦ(r)) as:(1) I(r) = IeI (r) + Iinel (r) + μ A(r) cos(2π Δk r + Φ(r))where the constant μ describes the contrast of the interference fringes which are related to the spatial coherence of the electron beam, and Φk is the resulting vector of the difference of the wavefront vectors of the two overlaping beams. Using a software package like HoloWorks, the complex image wave Ψ can be extracted.


Sign in / Sign up

Export Citation Format

Share Document