clutter suppression
Recently Published Documents


TOTAL DOCUMENTS

537
(FIVE YEARS 153)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
pp. 193
Author(s):  
Haodong Li ◽  
Guisheng Liao ◽  
Jingwei Xu ◽  
Lan Lan

In this paper, a joint maritime moving target detection and imaging approach, referred to as the fast inverse synthetic aperture radar (ISAR) imaging approach, based on the multi-resolution space−time adaptive processing (STAP), is proposed to improve the target detection performance and the target imaging efficiency in an airborne radar system. In the target detection stage, the sub-band STAP is introduced to improve the robustness of clutter suppression and to enhance the target output power with the decreased range resolution, by which the coarse estimation of target range-Doppler (R-D) location is obtained as the prior knowledge. In the following target imaging stage, the ISAR imaging is applied in the localized R-D zone surrounding with the target location. However, it is difficult to directly apply ISAR imaging with the conventional R-D algorithm because the slow-moving maritime target cannot be separated from the clutter interference in the Doppler frequency dimension. In this regard, the full-band STAP is applied in the R-D two-dimensional frequency domain for the simultaneous clutter suppression and high-resolution ISAR imaging, in which the envelope alignment and phase compensation are achieved by adaptive match filtering with the target Doppler frequency coarse estimation. Moreover, the reduced-dimension STAP applied in the target-surrounded localized Doppler frequency zone gives facilities for alleviating the computation burden. Simulation results corroborate the effectiveness of the proposed method.


Author(s):  
Xiongpeng He ◽  
Guisheng Liao ◽  
Shengqi Zhu ◽  
Jingwei Xu ◽  
Jiang Zhu
Keyword(s):  

2021 ◽  
Vol 13 (24) ◽  
pp. 5145
Author(s):  
Weiwei Wang ◽  
Pengfei Wan ◽  
Jun Zhang ◽  
Zhixin Liu ◽  
Jingwei Xu

Medium pulse repetition frequency (MPRF) is an important mode in airborne radar system. Since MPRF mode brings both Doppler and range ambiguities, it causes difficulty for the airborne radar to suppress ground or sea clutter. In recent years, it has been pointed out that the frequency diverse array (FDA) radar is capable of separating the range ambiguous clutter, which is helpful for the airborne radar in detecting weak moving targets originally buried in ambiguous clutter. To further improve the ambiguous clutter separation performance, an enhanced pre-STAP beamforming for range ambiguous clutter suppression is proposed for the vertical FDA planar array in this paper. With consideration of range dependence of the vertical spatial frequency, a series of pre-STAP beamformers are designed using a priori knowledge of platform and radar parameters. The notches of the beamformers are aligned with the ambiguous clutter to extract echoes from desired range region while suppressing clutter from ambiguous range regions. The notches can be widened by using covariance matrix tapering technique and the proposed method can improve the performance of range ambiguous clutter separation with limited degrees-of-freedom (DOFs). Simulation examples show the effectiveness of the proposed method.


2021 ◽  
Vol 19 ◽  
pp. 71-77
Author(s):  
Matthias G. Ehrnsperger ◽  
Maximilian Noll ◽  
Stefan Punzet ◽  
Uwe Siart ◽  
Thomas F. Eibert

Abstract. Background and clutter suppression techniques are important towards the successful application of radar in complex environments. We investigate eigenimage based methodologies such as principal component analysis (PCA) and apply it to frequency modulated continuous wave (FMCW) radar. The designed dynamic principal component analysis (dPCA) algorithm dynamically adjusts the number of eigenimages that are utilised for the processing of the signal. Furthermore, the algorithm adapts towards the number of objects in the field of view as well as the estimated distances. For the experimental evaluation, the dPCA algorithm is implemented in a multi-static FMCW radar prototype that operates in the K-band at 24 GHz. With this background and clutter removal method, it is possible to increase the signal-to-clutter-ratio (SCR) by 4.9 dB compared to standard PCA with mean removal (MR).


2021 ◽  
Vol 13 (24) ◽  
pp. 4982
Author(s):  
Ashish Mishra ◽  
Changzhi Li

This paper presents an extensive review of nonlinear response-based radar systems. Nonlinear radars are generally used for clutter suppression purposes. These radars detect the nonlinear response generated by diodes and transistors are used as a tag for target localization. Utilizing the nonlinearity properties of these devices, these radars have been used for purposes including locating humans trapped in earthquakes and avalanches, identifying migratory patterns of animals, examining the flight pattern of bees, and detecting bugs in electronic devices. This paper covers the utilization of these radars in human vital signs monitoring, detecting targets in a clutter-rich environment, etc. State-of-the-art nonlinear radars’ high-level architectures, design challenges, and limitations are discussed here. Recent works and results obtained by the authors are also summarized.


2021 ◽  
Vol 13 (23) ◽  
pp. 4954
Author(s):  
Luo Zuo ◽  
Jun Wang ◽  
Jinxin Sui ◽  
Nan Li

Clutter suppression is a challenging problem for passive bistatic radar systems, given the complexity of actual clutter scenarios (stationary, time-varying and fractional-order clutter). Such complex clutter induces intense sidelobes in the entire range-Doppler plane and thus degrades target-detection performance, especially for low-observable targets. In this paper, a novel method, denominated as the batch version of the extensive cancellation algorithm (ECA) in the frequency domain (ECA-FB), is presented for the first time, to suppress stationary clutter and its sidelobes. Specifically, in this method, the received signal is first divided into short batches in the frequency domain to coarsen the range resolution, and then the clutter is removed over each batch via ECA. Further, to suppress the time-varying clutter, a Doppler-shifted version of ECA-FB (ECA-FBD) is proposed. Compared with the popular ECA and ECA-B methods, the proposed ECA-FB and ECA-FBD obtained superior complex clutter suppression and slow-moving target detection performance with lower computational complexity. A series of simulation and experimental results are provided to demonstrate the validity of the proposed methods.


2021 ◽  
Vol 9 (11) ◽  
pp. 1165
Author(s):  
Shuqin He ◽  
Hao Zhou ◽  
Yingwei Tian ◽  
Wei Shen

Ionospheric clutter is one of the main problems for high-frequency surface wave radars (HFSWRs), as it severely interferes with sea surface state monitoring and target detection. Although a number of methods exist for ionospheric clutter suppression, most are suitable for radars with a large-sized array and are inefficient for small-aperture radars. In this study, we added an auxiliary crossed-loop antenna to the original compact radar antenna, and used an adaptive filter to suppress the ionospheric clutter. The experimental results of the HFSWRs data indicated that the suppression factor of the ionospheric clutter was up to 20 dB. Therefore, the Bragg peaks that were originally submerged by the ionospheric clutters could be recovered, and the gaps in the current maps can, to a large extent, be filled. For an oceanographic radar, the purpose of suppressing ionospheric clutter is to extract an accurate current speed; the radial current fields that were generated by our method showed an acceptable agreement with those generated by GlobCurrent data. This result supports the notion that the ionospheric suppression technique does not compromise the estimation of radial currents. The proposed method is particularly efficient for a compact HFSWRs, and can also be easily used in other types of antennas.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6842
Author(s):  
Jesús Sánchez-Pastor ◽  
Udaya S. K. P. Miriya Miriya Thanthrige ◽  
Furkan Ilgac ◽  
Alejandro Jiménez-Sáez ◽  
Peter Jung ◽  
...  

Self-localization based on passive RFID-based has many potential applications. One of the main challenges it faces is the suppression of the reflected signals from unwanted objects (i.e., clutter). Typically, the clutter echoes are much stronger than the backscattered signals of the passive tag landmarks used in such scenarios. Therefore, successful tag detection can be very challenging. We consider two types of tags, namely low-Q and high-Q tags. The high-Q tag features a sparse frequency response, whereas the low-Q tag presents a broad frequency response. Further, the clutter usually showcases a short-lived response. In this work, we propose an iterative algorithm based on a low-rank plus sparse recovery approach (RPCA) to mitigate clutter and retrieve the landmark response. In addition to that, we compare the proposed approach with the well-known time-gating technique. It turns out that RPCA outperforms significantly time-gating for low-Q tags, achieving clutter suppression and tag identification when clutter encroaches on the time-gating window span, whereas it also increases the backscattered power at resonance by approximately 12 dB at 80 cm for high-Q tags. Altogether, RPCA seems a promising approach to improve the identification of passive indoor self-localization tag landmarks.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6736
Author(s):  
Jipeng Wang ◽  
Jun Wang ◽  
Yun Zhu ◽  
Dawei Zhao

The novel sensing technology airborne passive bistatic radar (PBR) has the problem of being affecting by multipath components in the reference signal. Due to the movement of the receiving platform, different multipath components contain different Doppler frequencies. When the contaminated reference signal is used for space–time adaptive processing (STAP), the power spectrum of the spatial–temporal clutter is broadened. This can cause a series of problems, such as affecting the performance of clutter estimation and suppression, increasing the blind area of target detection, and causing the phenomenon of target self-cancellation. To solve this problem, the authors of this paper propose a novel algorithm based on sparse Bayesian learning (SBL) for direct clutter estimation and multipath clutter suppression. The specific process is as follows. Firstly, the space–time clutter is expressed in the form of covariance matrix vectors. Secondly, the multipath cost is decorrelated in the covariance matrix vectors. Thirdly, the modeling error is reduced by alternating iteration, resulting in a space–time clutter covariance matrix without multipath components. Simulation results showed that this method can effectively estimate and suppress clutter when the reference signal is contaminated.


Sign in / Sign up

Export Citation Format

Share Document