Quanitative aspects of electron diffraction using electron holography

Author(s):  
E. Völkl ◽  
L.F. Allard ◽  
B. Frost ◽  
T.A. Nolan

Off-axis electron holography has the well known ability to preserve the complex image wave within the final, recorded image. This final image described by I(x,y) = I(r) contains contributions from the image intensity of the elastically scattered electrons IeI (r) = |A(r) exp (iΦ(r)) |, the contributions from the inelastically scattered electrons IineI (r), and the complex image wave Ψ = A(r) exp(iΦ(r)) as:(1) I(r) = IeI (r) + Iinel (r) + μ A(r) cos(2π Δk r + Φ(r))where the constant μ describes the contrast of the interference fringes which are related to the spatial coherence of the electron beam, and Φk is the resulting vector of the difference of the wavefront vectors of the two overlaping beams. Using a software package like HoloWorks, the complex image wave Ψ can be extracted.

Author(s):  
Akira Tonomura

Electron-holographic interference microscopy, which provides an image of the phase distribution of an electron wave transmitted through a specimen, has become practical with the development of a field-emission electron microscope. This instrument, increasing the brightness of the electron beam by more than two orders of magnitude, allows biprism interference fringes to be directly observed on a fluorescent screen. The coherence of this microscope's electron beam has enabled phase measurement to a precision of 1/100 of the wavelength, and it even makes dynamical observation possible.


Author(s):  
John P. Langmore ◽  
Brian D. Athey

Although electron diffraction indicates better than 0.3nm preservation of biological structure in vitreous ice, the imaging of molecules in ice is limited by low contrast. Thus, low-dose images of frozen-hydrated molecules have significantly more noise than images of air-dried or negatively-stained molecules. We have addressed the question of the origins of this loss of contrast. One unavoidable effect is the reduction in scattering contrast between a molecule and the background. In effect, the difference in scattering power between a molecule and its background is 2-5 times less in a layer of ice than in vacuum or negative stain. A second, previously unrecognized, effect is the large, incoherent background of inelastic scattering from the ice. This background reduces both scattering and phase contrast by an additional factor of about 3, as shown in this paper. We have used energy filtration on the Zeiss EM902 in order to eliminate this second effect, and also increase scattering contrast in bright-field and dark-field.


Author(s):  
B.G. Frost ◽  
D.C. Joy ◽  
L.F. Allard ◽  
E. Voelkl

A wide holographic field of view (up to 15 μm in the Hitachi-HF2000) is achieved in a TEM by switching off the objective lens and imaging the sample by the first intermediate lens. Fig.1 shows the corresponding ray diagram for low magnification image plane off-axis holography. A coherent electron beam modulated by the sample in its amplitude and its phase is superimposed on a plane reference wave by a negatively biased Möllenstedt-type biprism.Our holograms are acquired utilizing a Hitachi HF-2000 field emission electron microscope at 200 kV. Essential for holography are a field emission gun and an electron biprism. At low magnification, the excitation of each lens must be appropriately adjusted by the free lens control mode of the microscope. The holograms are acquired by a 1024 by 1024 slow-scan CCD-camera and processed by the “Holoworks” software. The hologram fringes indicate positively and negatively charged areas in a sample by the direction of the fringe bending (Fig.2).


Author(s):  
Akira Tonomura

Electron holography is a two-step imaging method. However, the ultimate performance of holographic imaging is mainly determined by the brightness of the electron beam used in the hologram-formation process. In our 350kV holography electron microscope (see Fig. 1), the decrease in the inherently high brightness of field-emitted electrons is minimized by superposing a magnetic lens in the gun, for a resulting value of 2 × 109 A/cm2 sr. This high brightness has lead to the following distinguished features. The minimum spacing (d) of carrier fringes is d = 0.09 Å, thus allowing a reconstructed image with a resolution, at least in principle, as high as 3d=0.3 Å. The precision in phase measurement can be as high as 2π/100, since the position of fringes can be known precisely from a high-contrast hologram formed under highly collimated illumination. Dynamic observation becomes possible because the current density is high.


2007 ◽  
Vol 1058 ◽  
Author(s):  
T Phanindra Sai ◽  
A K Raychaudhuri

ABSTRACTMolecular wires of charge transfer molecules were formed by co-evaporating the 7 7 8 8-Tetracyanoquinodimethane [TCNQ] (acceptor) and Tetrathiafulvalene [TTF] (donor) molecules across prefabricated metal electrodes. Molecular wires of TTF TCNQ were also formed by evaporating single complex of TTF:TCNQ across prefabricated metal electrodes The prefabricated metal electrodes were made using electron beam lithography on SiO2 and glass cover slip substrates. Even though TTF: TCNQ wires grown from both co-evaporation and evaporation techniques show semiconductor like behavior in temperature dependence of resistance they show different activation energies due the difference in stoichiometry of TTF and TCNQ.


2000 ◽  
Vol 6 (S2) ◽  
pp. 228-229
Author(s):  
M. A. Schofield ◽  
Y. Zhu

Quantitative off-axis electron holography in a transmission electron microscope (TEM) requires careful design of experiment specific to instrumental characteristics. For example, the spatial resolution desired for a particular holography experiment imposes requirements on the spacing of the interference fringes to be recorded. This fringe spacing depends upon the geometric configuration of the TEM/electron biprism system, which is experimentally fixed, but also upon the voltage applied to the biprism wire of the holography unit, which is experimentally adjustable. Hence, knowledge of the holographic interference fringe spacing as a function of applied voltage to the electron biprism is essential to the design of a specific holography experiment. Furthermore, additional instrumental parameters, such as the coherence and virtual size of the electron source, for example, affect the quality of recorded holograms through their effect on the contrast of the holographic fringes.


2014 ◽  
Vol 169 (10) ◽  
pp. 838-844 ◽  
Author(s):  
Samuel Tehuacanero-Cuapa ◽  
José Reyes-Gasga ◽  
Etienne F. Brès ◽  
Rodolfo Palomino-Merino ◽  
Ramiro García-García

1997 ◽  
Vol 3 (S2) ◽  
pp. 1059-1060
Author(s):  
J.E. Bonevich

Electron holography can lend crucial insights to understanding the subtle manifestations of electro-magnetism in a wide range of materials. Whereas conventional microscopy is sensitive only to the intensity, holography reveals the phase changes in coherent electron wavefronts making it a unique tool to probe electric and magnetic fields on the nanometer scale. We have employed electron holography to characterize materials for mean inner potential measurements and also their electric and magnetic properties.Electron holograms were acquired in a 300 kV FE-TEM under two optical conditions: the standard high resolution mode was employed for mean inner potential measurements; to examine the intrinsic electromagnetic states, a lower resolution mode was used whereby the objective lens is turned off and the diffraction lens images the specimen. Digitally acquired holograms were reconstructed with the HolograFREE software package.Nanophase TiO2 particles generated in a flame burner system were found to have unusual central features. The rutile particles appear to contain faceted voids, raising the question whether the feature is truly a void or a secondary amorphous phase.


Sign in / Sign up

Export Citation Format

Share Document