scholarly journals Quantitative appraisal of Heliborne and ground-based time domain electromagnetic surveys for uranium exploration – A case study form Rajasthan, India.

2010 ◽  
Vol 2010 (1) ◽  
pp. 1-4
Author(s):  
A. K. Chaturvedi ◽  
Cas Lötter ◽  
K. Jagannadha Rao ◽  
A. K. Maurya ◽  
I. Patra ◽  
...  
Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. B13-B24 ◽  
Author(s):  
A. K. Chaturvedi ◽  
Cas Lotter ◽  
Shailesh Tripathi ◽  
A. K. Maurya ◽  
Indrajit Patra ◽  
...  

A fracture-controlled uranium deposit was identified in Proterozoic Ajabgarh metasediments of the North Delhi Fold Belt within the Khetri subbasin at Rohil, Sikar district, Rajasthan, India. Uranium mineralization in the area is associated with geologic structures, albitization, and pyroxenization of metasediments and conductors such as metallic sulfides and carbonaceous phyllites/graphitic schists. To locate uranium mineralization akin to Rohil in nearby thick soil covered areas, this association was targeted through heliborne geophysical surveys. High-resolution heliborne magnetic and time domain electromagnetic (TEM) surveys were conducted around Rohil. The survey delineated several targets with favorable geologic structures and conductors such as graphitic schist for further uranium exploration. One favorable target near Chappar village was taken up for follow-up exploration work. The EM conductor mapped from heliborne survey was subsequently validated through ground time-domain electromagnetic surveys and subsurface exploration. Modeling of heliborne and ground-based electromagnetic data revealed the presence of subsurface conducting bodies with comparable model parameters. Drilling established the presence of a subsurface conductor up to a depth of 300 m, which was attributed to the presence of graphite and sulfides (pyrrhotite) along foliation plane of carbon phyllite/graphitic schist/quartz-biotite schist and calc-silicate rock. Further detailed laboratory investigations (petrology/X-ray diffraction) of selected core samples from the conductive zones confirmed the presence of pyrrhotite and graphite responsible for EM signature. This study, carried out by using multiparameter data sets, proved the efficacy of heliborne surveys in locating favorable targets for uranium exploration in Ajabgarh group of rocks.


2015 ◽  
Vol 3 (2) ◽  
pp. T109-T120 ◽  
Author(s):  
Sofia Davydycheva ◽  
Alexander Kaminsky ◽  
Nikolai Rykhlinski ◽  
Andrei Yakovlev

We evaluated the results of a large-scale commercial project that illustrated the capabilities of advanced time-domain electromagnetic (TDEM) technologies powered with integrated interpretation of geologic and geophysical data. To study the hydrocarbon prospectivity of a field in Eastern Siberia, we developed a survey design, and then acquired, processed, and interpreted the TDEM data from 30 profiles (total length 772 km) covering an area of approximately [Formula: see text]. The data were acquired using the conventional TDEM and a novel high-resolution version of TDEM, the focused-source electromagnetic method. We described the geologic framework, data acquisition methodologies, and key results obtained using integrated TDEM, seismic, and well-logging data. The interpretation was used to select well locations for additional exploratory drilling. Postsurvey drilling supported our interpretation. The presented case study demonstrates the value of TDEM in the exploration workflow.


2016 ◽  
Vol 134 ◽  
pp. 226-234 ◽  
Author(s):  
F.J. Martínez-Moreno ◽  
F.A. Monteiro-Santos ◽  
J. Madeira ◽  
I. Bernardo ◽  
A. Soares ◽  
...  

2018 ◽  
Vol 32 (26) ◽  
pp. 3954-3965
Author(s):  
Cécile Finco ◽  
Coralie Pontoreau ◽  
Cyril Schamper ◽  
Sylvain Massuel ◽  
Gaghik Hovhannissian ◽  
...  

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. B109-B120 ◽  
Author(s):  
Veldi Ramesh Babu ◽  
Indrajit Patra ◽  
Shailesh Tripathi ◽  
Sridhar Muthyala ◽  
Anand K. Chaturvedi

The Peddagattu, Lambapur, Chitrial and Koppunuru uranium deposits along the northern margins of the Cuddapah Basin are confined to the middle Proterozoic unconformity interface between Archean basement granites and the overlying resistive quartzites. Negative transients observed in the coincident loop heliborne time-domain electromagnetic (HTEM) data over these deposits (occurring in outliers) are believed to be due to thick polarizable conductive zones occurring along the unconformity. Similar negative HTEM responses are recorded over the Gorukunta Tanda outlier. A ground spectral induced polarization (SIP) survey conducted over the outlier and ground geologic observations indicated an altered basement/regolith with thickness up to 5 m below 20–30 m thick quartzite. Interpretation of Cole-Cole parameters computed from the SIP data indicated a change in the dispersion. These Cole-Cole parameters were used in modeling negative HTEM data assuming a polarizable plate placed in a layered earth at a depth of approximately 50 m using the CSIRO LeroiAir program. A negative [Formula: see text] response in the late channels indicated that the negatives can be explained in terms of inductive induced polarization effects. Modeling of HTEM [Formula: see text] data for the profile through the Lambapur uranium deposit and the Gorukunta Tanda reveals the presence of a polarizable lithologic unit at a depth of approximately 40 m. This unit is interpreted as an argillic alteration of basement, with the presence of clay and/or disseminated sulfides as evidenced from the core extracted from the boreholes at depths below the highly resistive quartzite. Uranium mineralization is closely associated with altered basement and sulfides along the unconformity where the distinct negative electromagnetic (EM) signature is recorded. Furthermore, there exists a good correlation between the uranium mineralization grade and the thickness versus the averaged late-channel negative HTEM response over the known deposits. The negative EM response helped in locating the new target areas for uranium exploration.


Sign in / Sign up

Export Citation Format

Share Document